Crystal Radio」タグアーカイブ

[鉱石ラジオを楽しむ] 前編

*「無線と実験(1998年2月)」の記事より編集抜粋し、画像は記事を参考に付加しております。

小林健二製作の鉱石ラジオやゲルマジオ、鉱石ラジオキットや代表的なコレクションなど。

小林健二製作の鉱石ラジオやゲルマラジオ、鉱石ラジオ部分品、鉱石検波器、鉱石ラジオキットや代表的なコレクションなど。

1

通巻900号おめでとうございます。現れては消える昨今の雑誌状況の中で通巻900号、’74年の続刊はまさに『継続は力なり』を感じさせ、また同時にどれほど多くの読者に親しまれ支持されて来たかを彷彿とさせてくれます。

私の実家も以前蓄音機やレコードを扱う仕事をしていたためか、子供の頃店に常に数冊の「無線と実験」があったことを思い出します。おそらく親子三代に渡り愛読されている方々もあるかも知れません。私のようにこの雑誌のファンの一人としてあった者が、通巻900号の記念号に記事を寄せることができたというのは誠に幸せなことであります。

創刊時に於いてはその発行の辞にあるように『無線科学普及の目的を以て本誌を創刊せり』とあり、まさに『無線と実験』の銘が示すとおり、高周波系の内容であったことは周知のとおりであります。そこでとりわけ戦前の記事の中に登場した鉱石ラジオなる、半ば幻想的な受信機について少々述べさせていただき、まさに我が国の電子世界の幕開けの時代を、当時を知る方々に回想を持って、そして、未知の方々には一種の追体験をしていただけたらと思う次第です。

「鉱石受信機」とは、検波部に鉱物の結晶を用い、電池や家庭交流電燈などからの電源を用いなくても作動する受信機のことです。(感度を上げるため、電池で検波器にバイアス電圧を印加するタイプも一部にはありました)

この受信機の活躍した期間はそれほど長くはなく、最も象徴的な構造を持っている『さぐり式』に至っては、実質10数年と言っても過言ではないほど短命でありました。歴史的な存在としてそのような『さぐり式鉱石ラジオ』を知っておられる方々も時々お会いしますが、実際にその受信機で放送を聴いていたという方はすでに稀になっていると言えるでしょう。

製品としての当初の鉱石受信機は、高価な割には工作法さえ知っていれば原理的な事柄を熟知していなくても製作することができるため、当時の科学少年たちによっていたるところで作られました。JOAK開局当時はまだ一局しか放送所がなかったわけですので、同調回路も基本的には省くことができ、検波用鉱石とハイインピーダンスのヘッドフォン、それに空中線と接地線をつなぐことですぐに放送を聴取できたのです。それらは実用的な側面が中心であったことは確かですが、事実彼らラジオ工作少年たちの背景を考えれば、聴こえるはずのない『魔法の声』との出会であったということです。

現代に生活する私たちにとってテレビやファックス、携帯電話は日常的な機器です。しかしながら「無線と実験」が創刊されたり、ラジオ放送が始まった時代では、ただの箱に見えるものから人の声が聴こえてくるということは、まさにそれだけで驚きであったのでしょう。その不思議さからその後電気の世界に入り、やがて電気製品の開発や普及をする現代の電子企業の礎を創った人々も多いと聞きます。

何事も巨大化し複雑になっていくように見える現代、鉱石受信機のような素朴で親しみやすい ラジオを作ることで、いろいろな方々が趣味の工作を楽しまれるということを、私は望んでいるのです。

JOAK開局から間もない頃、当時のVIPに贈呈された珍しい鉱石受信機。固定式鉱石検波器が使用されている。(小林健二蔵) W140xH67xD102mm

JOAK開局から間もない頃、当時のVIPに贈呈された珍しい鉱石受信機。固定式鉱石検波器が使用されている。(小林健二蔵)W140xH67xD102mm

国産の鉱石受信機

国産の鉱石受信機

検波器はまだ完全にはレストアされていない。内部はしっかりとしており、表の検波器と並列に内部に「フォックストン」と呼ばれる古河電気の固定式の検波器がついているのが面白い。下部の引き出しには受話器が入っている。(小林健二蔵)W260xD227xH270mm

検波器はまだ完全にはレストアされていない。内部はしっかりとしており、表の検波器と並列に内部に「フォックストン」と呼ばれる古河電気の固定式の検波器がついているのが面白い。下部の引き出しには受話器が入っている。(小林健二蔵)W260xD227xH270mm

私自身はゲルマラジオを含めると、自作した鉱石式受信機は数十台あって、その一つ一つ形状や大きさ、回路や部品など、それぞれを色々に変化させてりして楽しんでいます。オモチャっぽいもの、昔式の重厚なもの、歴史的には姿を現さなかった創造的なものなどです。回路自体がとてもシンプルなため、その時の思いのままに製作できて工作の楽しみを味わうのにこの上ないテーマを与えてくれます。鉱石ラジオやゲルマラジオというと、やはり子供っぽい玩具的なイメージがあるようですが、初期の鉱石式受信機というと必ずしもそうではありません。そんなタイプの昔風の鉱石受信機について少し述べてみたいと思います。

[昔風鉱石受信機] つまみ、ターミナル、ノッチスイッチ、検波器の金属ホルダー、コイル、バリコン、木製筐体まで全て小林健二の手製。W340xD203xH185mm

[昔風鉱石受信機]
つまみ、ターミナル、ノッチスイッチ、検波器の金属ホルダー、コイル、バリコン、木製筐体まで全て小林健二の手製。W340xD203xH185mm

昔風鉱石受信機の内部 小林健二手製のバリコン、バリオメーター、バリコカップラーなど

昔風鉱石受信機の内部
小林健二手製のバリコン、バリオメーター、バリオカップラー、接合型鉱石検波器など

バリコンの製作

バリオメーターの製作

バリオカップラーの製作

ガラスケースに収めた接合型鉱石検波器(小林健二製作)

ガラスケースに収めた接合型鉱石検波器(小林健二製作)

接合型鉱石検波器の製作

 

*鉱石ラジオの部分品の製作記事をリンクしておりますので、参考にしてください。

写真にありますように外観は何か測定器のような感じで、子供の頃のなつかしい思い出と照らすとちょっと異なって感じる方もおいででしょう。しかし、鉱石受信機とは当初このようなものでした。構造的にはゲルマラジオとほとんど同じく、同調回路と検波部、そして受話器や空中線、接地線といった構成です。このタイプの鉱石受信機を製作する楽しみは、高い電源電圧が印加されないパーツにおいて、安全に各部品の工作をすることができるということです。

通常バリコンのような精度を要求される機械的構造を持つパーツは、アマチュアには製作できないと言われていますが、コンデンサーの原理を考えれば簡単なところから始めていくと工作的には難しいことはありません。

そして段々と工作技術が進んでいけば、写真のような機械的にも安定し、見栄えもそう悪くないエアバリコンを製作することも想像よりはるかに楽しんでできると思います。私自身仕事の上で金属加工をすることはありませんし、このバリコンを作るにあたっても旋盤などの専門的に見える機械はほとんど使用しないで作業を行いました。もちろんボール盤があると工作全般、何においても便利ですが、あとは糸ノコとヤスリくらいで製作可能です。

これらのバリコンを作る技術がありますと、今ではほとんど入手不可能となったタイプのバリコンも自分の望んだように製作できますし、壊れてしまった部分品を修理することもできます。また下辺を必要としないコンデンサーであれば、さらに色々とつっこんだものも製作可能です。

もし外形がメーカー製と比べて大きめになってしまっても構わないならば、様々な方法で容量、特性、体圧のものを作ることができるでしょう。

次にコイルですが、鉱石ラジオといえばスパイダーコイルを連想される方もいると思いますが、実際はソレノイドコイルかそれに準じたタイプのものが多かったようです。ただ今日の自作コイルと比べると特性の良いコイルの理論が確立していなかったのと、手作りでは量産向きではないものや、少々特性などを犠牲にしても機械的に作りやすいものとかがいりみだれていて、まさに様々な形状のコイルがありました。たいていの場合、工作的に考えればどれも興味深く色々と作ってみたくなるものばかりです。

小林健二自作のコイルの一部。左上から二番目の黄色い線を使用しているコイルは小林健二設計による名付けて「クラウンコイル」

小林健二自作のコイルの一部。上の左から二番目の黄色い線を使用しているコイルは、小林健二設計による名付けて「クラウンコイル」

海外ではこの黎明期のコイルを、ちょうど真空管をコレクションするのと同じように集める人も多いと聞いたことがあります。実際私自身も色々な文献などで変わったコイルの記事や写真を見て、とりあえず実験的に作ってみると、確かにだんだんとコイルだけでも面白くなって、今までに随分とたくさん作ってしまいました。鉱石ラジオのコイルを作る理論上では、基本的に線間に発生するコンデンサー成分をなるべく少なくすることでQ(クオリティー)の向上を図るようです。そんなわけで昔はやった女の子たちのリリアンのようにバスケットコイルやパンケーキコイルを作るのは楽しいものです。

コイルでも可変インダクターとして使用されるバリオメーターやバリオカップラーについては、高度なバリコンを作るのと同じように相当する技術が必要になりがちです。しかしながらバリコンやバリアブルインダクターにしても、ピンからキリまで対応できるというのも鉱石ラジオの特性のひとつでしょう。

小林健二

1986年に小林健二が夢の中で見たラジオを最初に作った「サイラジオ」第1号、音量とともに頭部の色が変わり明滅する。

1986年に小林健二が夢の中で見たラジオを最初に作った「サイラジオ」第1号、音量とともに頭部の色が変わり明滅する。

故渋澤龍彦氏へのオマージュとして’87年に作られたサイラジオの第2号。「悲しきラヂヲ」と名付けられている。一号機と同じく上部の結晶の色は明滅して変わる。下部には青色に光る環状列石のような石英が配されている小部屋がある。「サイラジオ」は鉱石ラジオではない。

故渋澤龍彦氏へのオマージュとして’87年に追悼のための本が作られた。存命中「サイラジオ」一号が小林健二個展に展示され、氏が訪れた時に展示場所が地下で電波がうまく受信できずにいた、そんな思いからか本の記事にさいし、サイラジオの第二号を小林は製作。「悲しきラヂヲ」と名付けられている。一号機と同じく上部の結晶の色は明滅して変わる。下部には青色に光る環状列石のような石英が配されている小部屋がある。「サイラジオ」は鉱石ラジオではない。

*以下、小林健二の不思議な電気を使用した作品を紹介します。

すでに1000人ほどの人がこの不思議な受信機から「過去の放送」を聴いたと言われる。 [IN TUNE WITH THE PAST TENSE]と名付けられた作品。

すでに1000人ほどの人がこの不思議な受信機から「過去の放送」を聴いたと言われる。
[IN TUNE WITH THE PAST TENSE]と名付けられた作品。

小林健二作品[IN TUNE WITH THE PAST TENSE] 「地球溶液」と言われるアース部分。

小林健二作品[IN TUNE WITH THE PAST TENSE]
「地球溶液」と言われるアース部分。

小林健二作品[IN TUNE WITH THE PAST TENSE] 透きとおった鉱物にタングステンの針を当てて検波すると、クリスタルイヤフォンで放送を聴くことができる。

小林健二作品[IN TUNE WITH THE PAST TENSE]
透きとおった鉱物にタングステンの針を当てて検波すると、クリスタルイヤフォンで放送を聴くことができる。

小林健二作品[夜光結晶短波受信機] 後ろの箱は電源。ディテクター(左)、スピーカー、本体(右)

小林健二作品[夜光結晶短波受信機]
後ろの箱は電源。ディテクター(左)、スピーカー、本体(右)

小林健二作品[夜光結晶短波受信機] 高さ18.5cmの小さなスピーカー。金属の鋳造によって作られている。

小林健二作品[夜光結晶短波受信機]
高さ18.5cmの小さなスピーカー。金属の鋳造によって作られている。

小林健二作品[夜光結晶短波受信機] ディテクター(検波部)、中の発光し透き通る赤色と緑色の石を、青色に光っている金属に当てるとヅピーカーから音が聴こえる。

小林健二作品[夜光結晶短波受信機]
ディテクター(検波部)、中の発光し透き通る赤色と緑色の石を、青色に光っている金属に当てるとスピーカーから音が聴こえる。

 

[鉱石ラジオを楽しむ]後編

KENJI KOBAYASHI

 

 

基本的なゲルマラジオの製作2

前回ご紹介した[基本的なゲルマラジオの製作]の続きです。

コア入リコイルとヴァリコンのゲルマラジオ

コア入リコイルとヴァリコンのゲルマラジオ 「ぼくらの鉱石ラジオぼくらの鉱石ラジオー小林健二著)」より

コア入リコイルとヴァリコンのゲルマラジオ
「ぼくらの鉱石ラジオぼくらの鉱石ラジオー小林健二著)」より

コア入リコイルとヴァリコンのゲルマラジオの回路図

コア入リコイルとヴァリコンのゲルマラジオの回路図

材料 コア入リコイル 1本(作例ではマックス印のPA 63Rというタップ付きインダクタンスコイルを使用しています) ポリヴァリコン(単連290 pF)1個 ヴァリコン用ツマミ 1個 ゲルマニウムダイオード 1本 抵抗1/4W(4分の1ワット)500kΩ(キロオーム)1本(この抵抗はなくてもかまいません) ターミナル、あるいはそのかわりとなるネジ等の金具 配線用エナメル線 10 cmほど クリスタルイヤフォン 1個 ケース(作例では透明のプラスチックの箱、外形4 cm× 7cm X 1 5cmを使いました)

材料
コア入リコイル 1本(作例ではマックス印のPA 63Rというタップ付きインダクタンスコイルを使用しています)
ポリヴァリコン(単連290 pF)1個
ヴァリコン用ツマミ 1個
ゲルマニウムダイオード 1本
抵抗1/4W(4分の1ワット)500kΩ(キロオーム)1本(この抵抗はなくてもかまいません)
ターミナル、あるいはそのかわりとなるネジ等の金具
配線用エナメル線 10 cmほど
クリスタルイヤフォン 1個
ケース(作例では透明のプラスチックの箱、外形4 cm× 7cm X 1 5cmを使いました)

このラジオはC(コンデンサー)同調式といいます。(詳しい原理などはおってアップ予定です)L(コイル)は動かしません。作例では実験として各タップにもアンテナをつなげられるようにしてみましたが、回路図のように黄のタップは実際には使用しません。

使用したコイルは小型ラジオを製作するために作られたもので、フェライトの磁性体をコイル筒の中央に入れることでインダクタンスを高くしているため、太さ8 mm、長さ(本体)3 cmと小型にできています。4 cmくらいの長さに出ている銅線は取り付け用のもので、ハンダ付けをしたり、途中で適当に切ったりできるものです。

なおプラスチックケースは熱に弱いので、部品は瞬間接着剤でくっつけました。

PA-63Rの取り付け方

PA-63Rの取り付け方

裏から見たところです。

裏から見たところです。

実体配線図

実体配線図

プラスチックケースの加工

プラスチックケース(スチロール製)は、アクリルや塩化ビニルやABS樹脂とくらべると加工がしづらくて、 ドリルで穴をあけようとするとかえって割れてしまったりするのですが、熱したクギなどでもすぐに穴があけられるので、いろいろと工夫してみてください。プラスチックケースがなければ、マッチ箱などを利用するのもいいと思います。

調整と聞き方

アンテナを自のタップのところにつけて、アースもつけ、ヴァリコンを動かして同調をとって聞きましょう。もし感度がアンテナが小さいことでうまくいかないようなら、黄のところにもつなぎかえたりしてみてください。

ミュー(μ )同調器を使ったゲルマラジオ

ミュー(μ )同調器を使ったゲルマラジオ 「ぼくらの鉱石ラジオー小林健二著」より

ミュー(μ )同調器を使ったゲルマラジオ
「ぼくらの鉱石ラジオー小林健二著」より

ミュー(μ )同調器を使ったゲルマラジオの回路図

ミュー(μ )同調器を使ったゲルマラジオの回路図

材料 ミュー同調器 1個 セラミックコンデンサー(100pF)1個 ターミナル 4つ ツマミ 1個 グルマニウムダイオード 1本 配線用エナメル線 10 cm クリスタルイヤフォン 1個 ケース(作例では透明のプラスチックの箱、外形4 5cm X7cmX2cmを使いました)

材料
ミュー同調器 1個
セラミックコンデンサー(100pF)1個
ターミナル 4つ
ツマミ 1個
グルマニウムダイオード 1本
配線用エナメル線 10 cm
クリスタルイヤフォン 1個
ケース(作例では透明のプラスチックの箱、外形4 5cm X7cmX2cmを使いました)

回路図中及び実体配線図中で、アンテナ 、アース 、コイル、 ダイオード、コンデンサー 、イヤフォンの関係がいろいろな位置で表してありますが、最終的にどことどこをつなぐかさえ正しければよいのです。また、コンデンサーやコイルの矢印のあるものは可変できることを表しています。

回路図中及び実体配線図中で、アンテナ 、アース 、コイル、 ダイオード、コンデンサー 、イヤフォンの関係がいろいろな位置で表してありますが、最終的にどことどこをつなぐかさえ正しければよいのです。また、コンデンサーやコイルの矢印のあるものは可変できることを表しています。

裏から見たところです。

裏から見たところです。

このラジオはL(コイル)同調式で、C(コンデンサー)は100 pFで固定されています。ミュー同調器はコイルの中のコアを動かしてLを変化させるので、コアの動くスペースを考えておかなければなりません。それ以外はあまリスペースを取らないので、作例では余ったスペースにイヤフォンを入れるようにしました。

ミュー同調器はなかなか入手しづらいかもしれませんが、参考としてあげました。コルの中のコアを出し入れするものですから、自作はそれほど難しくありません。

調整と聞き方

ミュー同調器はメカニックで動くので、組み立てる前に、スムーズに動くように油などをギヤ部にさして調整をしておき、組立て後にも再度調整をしましょう。アースとアンテナを逆につけかえたりして感度をみてください。

ミュー同調器の自作

ミュー同調器が手に入らなかったり自作したい場合のために、ダストコアと呼ばれるものを紹介します。これは直径4~10 mm長さ2~ 20 cmくらいまであるフェライトなどの磁性材料を使って棒状に作られたものです。これをミュー同調器のようにギアを使ったり、あるいは図のようにプーリとワイヤーでコイルのなかにダストコアが出入りする機構を作ってあげればいいのです。

ミュー同調器の自作

ミュー同調器の自作

ミュー同調器の自作

ミュー同調器の自作

ミュー同調器とヴァリコンを使ったゲルマラジオ

ミュー同調器とヴァリコンを使ったゲルマラジオ 「ぼくらの鉱石ラジオー小林健二著」より

ミュー同調器とヴァリコンを使ったゲルマラジオ
「ぼくらの鉱石ラジオー小林健二著」より

材料 ミュー同調器 1個 ヴァリコン単連290 pF l個(作例では古いミゼットヴァリコンを使用しています) グルマニウムダイオード 1本 ツマミ 2個 ターミナル 4個 配線用エナメル線 10 cmほど クリスタルイヤフォン 1個 ケース(作例では透明のプラスチックの箱、外形4cmX10cmX2 5cmを使いました) (写真には抵抗も1本写っていますが、今回使用しませんでした)

材料
ミュー同調器 1個
ヴァリコン単連290 pF l個(作例では古いミゼットヴァリコンを使用しています)
グルマニウムダイオード 1本
ツマミ 2個
ターミナル 4個
配線用エナメル線 10 cmほど
クリスタルイヤフォン 1個
ケース(作例では透明のプラスチックの箱、外形4cmX10cmX2 5cmを使いました)
(写真には抵抗も1本写っていますが、今回使用しませんでした)

ミュー同調器とヴァリコンを使ったゲルマラジオ の「回路図

ミュー同調器とヴァリコンを使ったゲルマラジオの回路図

実体配線図

実体配線図

ミュー同調器とヴァリコンを使ったゲルマラジオの裏

ミュー同調器とヴァリコンを使ったゲルマラジオの裏

調整と聞き方

このラジオはL、C同調式で、可動部が2つあるのでしっかり製作してください。

聞き方としては、まずヴァリコンを真ん中の位置にしてミュー同調器を動かし、感度のいいところを見つけたらヴァリコンを動かし、またミュー同調器を動かすというようにしてみてください。

 

*この記事は、小林健二著「ぼくらの鉱石ラジオ(筑摩書房)」より抜粋編集しております。

KENJI KOBAYASHI

基本的なゲルマラジオの製作

簡単な受信機がどのような作動をするのか確かめながら、かつて少年たちが夢見た受信機の製作へと少しずつ近づいていってみましょう。

基本のゲルマラジオ(プロジェクト1)

まずは鉱石ラジオの作動を確認するために、手近な材料とゲルマニウムダイオードを使ってゲルマラジオを作ってみましょう。

基本のゲルマラジオ(プロジェクト1)

基本のゲルマラジオ(プロジェクト1)

プロジェクト1の実体配線図

プロジェクト1の実体配線図

材料・ トイレットペーパーの芯 1本/ 15 cm角くらいの木の板 1枚/ 竹串 1本/ 画鋲 5つ/ エナメル線 20mほど/ クリスタルイヤフォン 1個/ グルマニウムダイオード 1本(使用する時、向きはどちらでもよい)/ サンドペーパー少々

材料・ トイレットペーパーの芯 1本/ 15 cm角くらいの木の板 1枚/ 竹串 1本/ 画鋲 5つ/ エナメル線 20mほど/ クリスタルイヤフォン 1個/ グルマニウムダイオード 1本(使用する時、向きはどちらでもよい)/ サンドペーパー少々

材料はこれでなければだめというわけではありませんので、家にある材料を利用してください。今回はハンダ付けをしないので、部品の固定や接合を安定させるために画鋲を使います。エナメル線は0.4~ 0.7mmくらいのもので、色は好きなものを使ってください(作例では0.5mmのものを使っています)。ダイオードはゲルマニウムタイプなら(lN60、 lN46、 lN34など)どれでもかまいません。

この工作では、ゲルマラジオから放送が聞こえるのを体験することがいちばんの目的ですから、接合部分さえきちんとすれば、コイルの巻き数が少々ちがったり、コイルの芯の太さが多少異なってもかまいません。

まずコイルの芯を作ります。 トイレットペーパーの芯に、焼きとり用の竹串か、割 り箸を細くしたようなものを、ボンドかセロテープで固定します。

まずコイルの芯を作ります。 トイレットペーパーの芯に、焼きとり用の竹串か、割 り箸を細くしたようなものを、ボンドかセロテープで固定します。

竹串をはさんで紙筒に2カ所穴をあけ、ちょうど竹串の下をくぐらせるように10~ 15 cmくらいエナメノン線を引き出しておいて、巻きはじめを固定します。

竹串をはさんで紙筒に2カ所穴をあけ、ちょうど竹串の下をくぐらせるように10~ 15 cmくらいエナメノン線を引き出しておいて、巻きはじめを固定します。

エナメル線はどちらでも巻きやすい方向へ、なるべくつめてしっかりと巻きます。

エナメル線はどちらでも巻きやすい方向へ、なるべくつめてしっかりと巻きます。

巻き数は120~ 150回くらいです。ひととおり巻きおわったら巻きはじめと同じようにして固定し、引き出し線を10~ 15 cmくらい残して切ります。 竹串によって出っ張った部分の被覆をサンドペーパーではがし、銅を露出させます。(作例では、見やすいように色のついた線を使用しています)

巻き数は120~ 150回くらいです。ひととおり巻きおわったら巻きはじめと同じようにして固定し、引き出し線を10~ 15 cmくらい残して切ります。
竹串によって出っ張った部分の被覆をサンドペーパーではがし、銅を露出させます。(作例では、見やすいように色のついた線を使用しています)

全体を組み立てます。

コイルの筒は画鋲で板にとめ、エナメル線の接続部分の被覆をサンドペーパーではがします。

コイルの筒は画鋲で板にとめ、エナメル線の接続部分の被覆をサンドペーパーではがします。

今回はハンダ付けをしないので、線と線をねじって接合します。ハンダ付けをするときは、下のようにハンダ付けをして出っ張りを切りますが、ねじっておけば再びはずすこともできます。

今回はハンダ付けをしないので、線と線をねじって接合します。

コイルから引き出した一方のエナメル線にクリスタルイヤフォンをつなぎます。もう一方にゲルマニウムダイオードをつなぎ、さらにダイオードを介してイヤフォンヘとつなぎます。ところどころに画鋲を打ってそれぞれの線を台に固定します。そして10 cmくらいの長さに切った銅線の両端の被覆をはがし、一方を折り曲げてねじり、コイルの被覆をはがした部分に当てる接点とし、もう一方はアンテナヘの線とからめて画鋲で留めます。コイルのダイオードとつながっていない方の端にアースヘの線をからめ、やはり画鋲で留めて出来上がりです。

アンテナやアースヘの配線については下記記事を参考にしてください。

アンテナやアース

このゲルマラジオは、分離があまりよくないので混信は多いのですが、ダイオードを使っているために失敗は少なく、アースがちゃんととれていれば、アンテナが小さくてもきっとどこかの放送は聞こえると思います。調整のしかたは、アンテナからの線とつながっているコイルの中ほどの線を被覆のあるところを持って、コイルの導体の出ているところにゆっくりと先を接して動かしていきます。いちばんよく聞こえるところを見つけたら、そこにセロテープなどで固定して放送を聞いてみてください。

コイルにタップを出して作るゲルマラジオ(プロジェクト2)

この簡単なしくみのゲルマラジオを、タップのあるコイルを使って作ってみましょう。

コイルにタップを出して作るゲルマラジオ(プロジェクト2)

コイルにタップを出して作るゲルマラジオ(プロジェクト2)

プロジェクト2の実体配線図

プロジェクト2の実体配線図

プロジェクト2 の回路図(ポリヴァリコンを取り付けた部分を取ればプロジェクト1の回路図となります。

プロジェクト2 の回路図(ポリヴァリコンを取り付けた部分を取ればプロジェクト1の回路図となります。)

材料はプロジェクト1と同じですが、必要ならばポリヴァリコン(単連290 pF)も用意しておいてください。

まずトイレットペーパーの芯に2つ穴をあけてそこにエナメル線を通し、10 cmくらい引き出して巻きはじめを固定します。10回巻いたところで竹申を横から入れて、 1回竹申をまたがせて巻き、また竹申をはずして10回巻きます。10回目、20回目、30回目と竹串をまたがせて巻くことでタップを出していきます

まずトイレットペーパーの芯に2つ穴をあけてそこにエナメル線を通し、10 cmくらい引き出して巻きはじめを固定します。10回巻いたところで竹申を横から入れて、 1回竹申をまたがせて巻き、また竹申をはずして10回巻きます。10回目、20回目、30回目と竹串をまたがせて巻くことでタップを出していきます。

初めのころはぐらぐらして巻きづらいですが、そのうちしっかりしてきます。作例では150回巻いて15カ所のタップを出してみました。

芯に穴を2つあけてエナメル線の巻きおわりを通して固定したあと、サンドペーパーでタップのところの被覆をはがしておきます。

芯に穴を2つあけてエナメル線の巻きおわりを通して固定したあと、サンドペーパーでタップのところの被覆をはがしておきます。

組み立て方はプロジェクト1と同じです。

また、写真のようなポリヴァリコンをこの回路に付加すれば、鉱石ラジオの代表 的なパーツがそろうことになります。

また、写真のようなポリヴァリコンをこの回路に付加すれば、鉱石ラジオの代表的なパーツがそろうことになります。左上は自作ツマミ、左下はポリヴァリコンにつけるシャフト、中央がポリヴァリコン、右上はシャフトをつけた状態、右下は目盛。

ハンダを使わないで配線をする場合、あらかじめ被覆をはがしたエナメル線をヴァ リコンの端子に巻きつけて、ちょうど10 cmくらいの2本の触角のように出しておいてから、コイルの両端に並列に取りつけます。この際、ヴァリコンの端子にはなるべくしっかりとつけたいのですが、端子といってもちょっと厚い箔状のものな ので、こわさないように様子を見ながら作業してください。

ハンダを使わないで配線をする場合、あらかじめ被覆をはがしたエナメル線をヴァリコンの端子に巻きつけて、ちょうど10 cmくらいの2本の触角のように出しておいてから、コイルの両端に並列に取りつけます。この際、ヴァリコンの端子にはなるべくしっかりとつけたいのですが、端子といってもちょっと厚い箔状のものなので、こわさないように様子を見ながら作業してください。

ヴァリコンをつけた場合は、ヴァリコンをちょうど中央(裏から見ると、回転する部分が半分隠れ、半分出ているところ)にセットしておいて、コイルの感度のいちばんいいタップをまず探します。そしてそこに線を固定して、ヴァリコンを動かしてみてください。選局も少しできるはずです。他のタップのところでも、いろいろ試してみてください。

*この記事は、小林健二著「ぼくらの鉱石ラジオ(筑摩書房)」より抜粋編集しております。

材料は東京秋葉原のパーツ屋さんで揃えることができますが、通販でしたら銀河通信社で「ゲルマラジオセット」が紹介されていて、基本的なパーツが手に入ります。

 

KENJI KOBAYASHI

受話回路(ヘッドフォンやイヤフォン)

受話回路は基本的には受話器だけで、検波回路によって高周波電流から分離された音声信号を実際に耳に聞こえるようにする部分です。受話器にはヘッドフォンとイヤフォンがあります。

ヘッドフォン

ヘッドフォンの外観は現代のものと似ていますが、スピーカーなどを鳴らすほどの力のない1球式(真空管)ラジオに使用されるためにとても高感度につくられていました。 1875年にアメリカのベル Alexander Graham BELL (1847-1922)によって発明され、やがて電話の交換手の両手を自由にするため頭に乗せる受話器として改良された時計型受話器を原型としています。

JOAKの本放送が始まった大正14年当時のヘッドフォン付き鉱石ラジオ。

JOAKの本放送が始まった1925年頃のヘッドフォン付き鉱石ラジオ。

精度高く作られた当時のヘッドフォンは「素人には決して工作できない」と本にでてきますし、「初心者には片耳式で充分」と言うようにとでも高価でもありました。当時の雑誌の記事にも「鉱石ラジオは作ってみたが、受話器が高くて放送はまだ聞いていない」といったものを見かけます。

鉱石ラジオや1球式ラジオが全盛のころに最も多く作られ普及しましたが、鉱石ラジオ本体よりも高価なものだったようです。

両耳式ヘッドフォンのいろいろ

両耳式ヘッドフォンのいろいろ

ヘッドフォンの受話部分の中の状態

ヘッドフォン受話部分の中の状態

代表的なヘッドフォンの構造です。エボナイトでできたケースとその中に永久磁石、極片と呼ばれる軟鉄製の鉄芯にコイル、それに薄い鉄板製の振動板から成り立っていました。

代表的なヘッドフォンの構造です。エボナイトでできたケースとその中に永久磁石、極片と呼ばれる軟鉄製の鉄芯にコイル、それに薄い鉄板製の振動板から成り立っていました。それぞれの部品は感度を上げるためにいろいろ工夫がしてありました。永久磁石は永磁性を失わないようにタングステン綱やクローム綱を用い、振動板はスタローイ綱板にクロームのメッキをし、コイルは0.05~0.08 mmのとても細い絹巻き銅線によって6000~ 20000回くらい巻かれてありました。 これらは当時では高度な技術であったと思われます。

作動原理は、永久磁石によって磁化された鉄芯が0.2mm前後の空隙(ギャップ)をへだててうすい鉄板を常に引きつけています。やがてコイルに音声信号が入ってくると電磁石の原理でコイルには交番する強弱を伴った磁力が発生し、振動板を振動させ、それが音として聞こえるようになるのです。

1、振動板は常に永久磁石の力でほんのすこしのギャップを開けて引きつけられている。 2、コイルに交流電流が流れると電磁石の原理でコイルの鉄芯に微弱に変化する磁力が発生する。 3、2で発生した磁力が永久磁石の磁力を強めたり弱めたりすることで、引きつけられていた振動板が振動子、音が発生する。

1、振動板は常に永久磁石の力でほんのすこしのギャップを開けて引きつけられている。
2、コイルに交流電流が流れると電磁石の原理でコイルの鉄芯に微弱に変化する磁力が発生する。
3、2で発生した磁力が永久磁石の磁力を強めたり弱めたりすることで、引きつけられていた振動板が振動子、音が発生する。

振動板の厚さは普通0.1mm程度で、薄ければ薄いほど感度はよくなりますが、あまり薄いと周波数特性が悪くなり、音がよくなくなります。また固有振動数を音声の周波数より高くしないと、ビリビリしたりキンキンと共振してしまう音域ができてよくありません。またゴムの輪をパッキングにすることで共振を起こさないように工夫されていて、直径はだいたい5cmくらいです。

コイルは直流抵抗でおよそ1~ 2 kΩ くらいで(テスターなどではかる場合)、インピーダンス(Z:交流における周波数によって変化する抵抗分)は1kHzで10~ 40 kΩ くらいです。インダクタンス(L)は0.5~ 3Hくらいです。

またこのヘッドフォンには別の構造をもったものもいくつかあり、例としてはバランスドアーマチェア型とかマグネチックコーン型と呼ばれるもの(ヴォールドウィンマイカ受話器など)があります。

下が一般的なヘッドフォン、上がヴォールドウィンマイカ受話器です。

下が一般的なヘッドフォン、上がヴォールドウィンマイカ受話器です。

永久磁石の磁極(N、S極)の間にコイルを置いて、さらにその中に軟鉄片を、その中心のところを支点としその一端をレバー(ビヴォット)として、マイカでできた振動板を動かすことで音に変えるというものです。このタイプを測定してみると以下のようなスペックになりました。 R=693Ω 、 Z=29 3kΩ (l kHz)、L=1.48H またどのタイプにおいても、両耳式と片耳式がありました。

永久磁石の磁極(N、S極)の間にコイルを置いて、さらにその中に軟鉄片を、その中心のところを支点としその一端をレバー(ビヴォット)として、マイカでできた振動板を動かすことで音に変えるというものです。このタイプを測定してみると以下のようなスペックになりました。 R=693Ω 、 Z=29 3kΩ (l kHz)、L=1.48H
またどのタイプにおいても、両耳式と片耳式がありました。

イヤフォン

イヤフォンにはクリスタル式とマグネチック式があります。マグネチック式はヘッドフォンと構造が似ていて、インピーダンスが8Ω とか16Ω とひくく、もっと電力がないと鳴らすことが出来ないものが多いので、鉱石ラジオには向きません。

クリスタル式は価格的にも感度的にも、そしてクリスタルを用いるところなどもまさに鉱石ラジオ(クリスタルセット)にはぴったりのものでしょう。

ただ実際は、戦後になって鉱石ラジオがゲルマラジオに置き変わったころにヘッドフォンがクリスタルイヤフォンに置き変わっていったので、ちょっとすれ違いの感じです。このクリスタルイヤフォンも残念ながら最近では日本で生産されていないと思いますが、ジャンク屋や古い電気屋さんにきいてみるとけっこう手に入るはずです。

構造はこのようになっていますが、これはロッシェル塩Rochelle saltと呼ばれる結晶を使っています。

構造はこのようになっていますが、これはロッシェル塩Rochelle saltと呼ばれる結晶を使っています。

ロッシェル塩は酒石酸ナトリウムカリウム四水和物

(Potassium Sodium Tartrate Tetrahydrate 2NaKC4H406・4H20)で、酒石酸を中心とした水和化合物です。酒石酸は天然のブドウやその他の果実中に存在してワインを醸造する過程等で作られ、昔のサイダーやラムネの味付けにも使われた清涼感のあるすっぱい味のものです。

ロッシェル塩は1672年、フランスのロッシェルという町の薬剤師セニェットSEIGNETTEがワインを作る際に副産物としてできる酒石を原料にして精製して利尿効果のある家伝の秘薬として発売したものです。地名からロッシェル塩、あるいは創製者の彼の名前からセニェット塩とも呼ばれ、無色透明の斜方晶系半面像晶族(Rhompic-hemi-hedral class)に属する粒状結晶です。

このロッシェル塩にはピエゾ圧電気効果piezo-electric effectというおもしろい性質があります。これは水晶、 トルマリン、リチア電気石などにもあり、1880年にキュリー兄弟Paul Jacques CURIE(1855-1941)、Pierre CURIE(1859-1906)によって発見されました。

上記の結晶に機械的に圧力を加えるとある方向に電気(起電力)を発生させるというもので、 トルマリンなどが電気石と呼ばれるのはそのためです。そしてその逆に結晶に対してある方向に電圧を印加すると機械的に歪むことを、 翌1881年に同じフランスのリップマンGabriel LIPPMANN(18451921)が発見しました。これをピエゾ圧電気逆効果converse piezo- electric effectと言い、クリスタルイヤフォンはこの性質を利用しているのです。水晶は高い周波数で発振できるので水晶振動子としてクォーツ時計などに使われ、低い周波数でも最も大きく振動するこのロッシェル塩の結晶がクリスタルイヤフォンに使われています。

クリスタルイヤフォンの構造イヤフォンの構造についてもう少し説明すると、内部に入っているロッシェル塩の結晶は1cmヘーホーくらいのものを厚さ0.3 mmほどにスライスして、2枚を電極をはさむように接着してあります。このようにクリスタルイヤフォンはコンデンサーと同じ構造なので、検波回路で並列につなぐコンデンサーが必要ない場合が あると説明したのはこのためです。

またこのクリスタルイヤフォンは弱く、直流の電圧がかかるとこわれることもあるので、並列に抵抗(500 kΩ ~ 1MΩ )を入れたりします。

ロッシェル塩は音声信号によって振動して、さお(レバー)と呼ばれる支持体によってアルミの薄い0.1mmほどのコーン状の振動板を動かして発音する仕組みになっています。直流抵抗Rはもちろんコンデンサーと同じではぼ無限大、インピーダンスZは100 kΩ~ 5MΩ (メグオーム)くらいです。

市販されていたクリスタルイヤフォンも後期のものは、ロッシェル塩のかわりにチタン酸バリウムを用いて作ったピエゾ圧電素子を使っているようです。

イヤフォンの中の構造

近年のイヤフォンの構造

ロッシェル塩については人工結晶を作るでもご紹介しております。

*この記事は、小林健二著「ぼくらの鉱石ラジオ(筑摩書房)」より抜粋編集しております。

KENJI KOBAYASHI

 

プレパラートと森の友人

東京オリンピックの次の年の夏休み、大掃除の日、家の中を片していると、木の箱に入った顕微鏡が出てきた。

兄のものであった。彼は”これはお前にあげるよ”と無造作にくれたが、ぼくにとっては何か重くて高そうで、彼が気を変えない内に自分用のボロボロの机の下に押し込んだ。その時の何か、パスポートを手にしたような、そんなワクワクする実感は今も忘れない。

最初は、隣組の友達とそこいらの葉っぱや砂や死んだ小さな虫なんかを見ていたりした。

もしぼくにこの時、科学者的才能があったなら、小さな発見でもできたのだろうが・・・当時すでに「恐竜博士」という輝かしい称号を持っていたぼくは、何がなんでも恐竜にはじまり、恐竜に終わる日々をおくっていた。一心不乱に恐竜の本を顕微鏡で覗く姿を見る家族は、さぞため息の出たことだろう。

科学実験をする小学生の頃の小林健二。偶然に発見された古い写真。

実験をする小学生の頃の小林健二。偶然に発見された古い写真。

五年生になって科学クラブに入ったぼくは、簡易なプレパラートの作り方を習ったりして得意になっていた。しかし、生来の不器用者には、永久プレパラート(バルサムなどを使用した保存性の高い顕微鏡標本)の制作は苦手で、気泡が抜けなかったり、またカヴァーグラスがバルサムで盛り上がりすぎて、対物レンズで標本を壊したり、恐竜博士には、なかなかままなら無い大人の世界への長い道のりが、そろそろ見え隠れしていた。そのうち相棒が遠方へ行ってしまったことがきっかけとなって、顕微鏡はほこりをかぶり始めたのだった。

偶然に発見された数枚の写真の一枚。服装から中央で顕微鏡をのぞいている少年は、小林健二と思われる。

偶然に発見された数枚の写真のうちの一枚。服装から中央で顕微鏡をのぞいている少年は、小林健二と思われる。

いつか時間があったらゆっくりじっくり研究?三昧してやるんだと思いながらも、身近に起こる由無事が10代を通り来させて、20代も後半になった1984年の夏ころ、少しづつだけどアトリエの一番奥の(そう、いつの間にか絵ばかり描くのが生活になっていた)小さな部屋の1隅に、始めたばかりの電気の測定器や試験機に混じって、光学光源器の力をかりて、夜な夜なプレパラートを再び光らせることができはじめていた。

正直に言ってぼくは美術的な事象に対して、特に影響を求めたことはない。しかし、子供の時から憧れの科学者たちの世界に、強く引かれていたと思う。書籍であっても今にいたるまで、小説などはほとんど読むことはないが、「子供の科学」や「恐竜図鑑」は言うに及ばす、河出の サイエンス・スタディー・シリーズの「水の伝記」や、ガモフの「不思議の国のトムキンス」そして三宅泰雄氏の「空気の発見」など、言い出せば枚挙にいとまがない。特に三宅氏の「空気の発見」は未だ言うなれば座右の書出会って、ぼくのバイブルのように今でもぼくに勇気を与え、どれだけ心を癒してくれたか分からない。とりわけその核心的なところを一部引用するならば、第1章の終わりのこんなところだろうか・・・

「(前略)ガリレオがはじめて空気に目方があることを発見してから、アヴォガドロの分子説まで、およそ、250年が経過しました。その間、多くの天才たちが、一枚一枚、空気の秘密のベールをあばいていきました。イタリー人も、フランス人も、イギリス人も、またドイツ人も、同じ目的のために一生を捧げました。私たちが、これまでに学んだのは、この目的のために一生を捧げた多くの人々のうちの、もっとも、偉大な人々と、その人たちの仕事についてでありました。しかし、私たちは、この人たちによってのみ、科学が進んだと考えではなりません。否、これらの偉人たちのために、かれらが高くとび上がるために、かたい土台をきずいた、数多くの名もない研究者のあったことを忘れてなりません。みなさん、私は君たちの中から、第二のラヴォワジェ、第二のドルートンの生まれることをどんなにか、楽しみに待ち望んでいることでしょう。しかし、私がもっと君たちにのぞみたいことは、たとえ、むくいられることがなくとも、また、たとえめざましい研究でなくとも、科学の巨大な殿堂のかたすみに、ただ一つでも誠実のこもった石をおく人に、なってもらいたいということです。」

小林健二の顕微鏡など

小林健二の顕微鏡など

小林健二個展[EXPERIMENT1]会場画像(Gallery MYU)

小林健二個展[EXPERIMENT1]会場画像(Gallery MYU)

小林健二個展[EXPERMENT1] 小林自作のプレパラートがピンク色のバックライトとともに会場に展示され、多重焦点式の自作プレパラートを中央の偏光顕微鏡にて観察できる。

小林健二個展[EXPERMENT1]
小林自作のプレパラートがピンク色のバックライトとともに会場に展示され、多重焦点式の自作プレパラートを中央の偏光顕微鏡にて観察できる。

小林健二自作プレパラート

小林健二自作の多重焦点式プレパラート

小林健二自作の多重焦点式プレパラート

小林健二自作の多重焦点式プレパラート

小林健二自作の多重焦点式プレパラート

小林健二自作の多重焦点式プレパラート

小林健二自作の多重焦点式プレパラート

小林健二自作の多重焦点式プレパラート

小林健二自作の多重焦点式プレパラート

小林健二自作の多重焦点式プレパラート

小林健二自作の多重焦点式プレパラート

小林健二自作の多重焦点式プレパラート

ぼくを引きつけるイメージの中には、これら科学の持っている、さらに拡大して言うなら、自然や宇宙の持っている巨大な無名的現象にあるのかもしれない。科学者と名のつく人々に於いても、エジソンやレントゲンいざ知らず、パーキンやガロアやテスラではあやしくなって、日本人でも丘浅次郎や河野広道のこととなると、名前はともかくその人の仕事ということになると、知っている人を探す方が難しいだろう。しかし、彼らはぼくにとっては強い影響と感動を与えてくれた人々であった。ある意味では、本来なら目に見えにくい、見過ごしてしまいそうなものを見つめ続けた人たちなのかもしれない。

泥のような実験廃棄物から鮮やかなすみれ色「モーブ」を発見したウィリアム・パーキン。

その数学的天才を持ちながら周囲には認められることもないまま、弾圧的時代に革命思想と政治運動に身を投じ、殺害されてしまったエバリスト・ガロア。

世界の平和を夢み、高周波振動の電気的共鳴を利用して、地球上ならどこでも空間からエネルギーを取り出せる「世界システム」を考案しながらも、そのイメージを理解されることなくホテルの一室で孤独のうちに最期を迎えたニコラ・テスラ。

その素晴らしい発明はたくさんの人命を救う手助けをしながらも、「私の発見は全人類のためのものだから、私個人の利益の内ではない」という言葉とともに、特許などによる莫大な利権を断固拒絶して、貧困の中で生涯を閉じたヴィルヘルム・コンラット・レントゲン。

苔虫などを研究し、その中に貴賤貧富の差もなく争いもない、犯罪もなくそれを防止する道徳、宗教、法律、警察、政府なども必要でないという無政府協和の楽園を夢みた、丘浅次郎。

雪虫などを研究し、森を愛し、数々の生態系より理想的集団社会を夢みながらも、当局によって弾圧、そして投獄。その生前に自著の出版を見ることなく他界した、河野広道。

誰もが知っている発明王、トーマス・アルバ・エジソンでさえ、その晩年には、サイエンティフィック・アメリカンのインタビューに対してこんなことを答えている事実はあまり知られていない。

「もし私たちの人格が死後も生きつづけるものなら、私たちがこの世で得た記憶や知性、それにいろいろな能力や知識もそのまま保たれていく、と仮定することは、十分理論的であり科学的であると思います。したがって、死後の人格が生前この世に残していった人々と交信したがっていると考えてもよいはずです。私は、死後の人格は物質に変化を与え得ると考えたい。もしこの考えが正しいなら、あの世にいる人々が変化させたり動かしたり操作したりできるような精巧な装置さえ作れば、それはきっと”何か”を記録するに違いありません。」

そう、人知れず有ることに、ぼくはどんなにか思いを馳せ、また引きつけられることか。繁華な街よりはふた筋裏の静かな路地、平積みの新本よりは忘れられたような古書。自分自身ゴロゴロしているのが好きなせいか、人込みや雑踏、騒音やせわしなさがどうしても苦手だ。だから一年の内でも気のおけない友人たちと会ったりするのがせきのやまなのだ。

個展開催にあたり同時に発行されたART BOOK「EXPERIMENT1」

個展開催にあたり同時に発行されたART BOOK「EXPERIMENT1」
部数限定で製作されたもので、内容は小林自作プレパラート+データファイル+顕微鏡写真(ポジフィルム)、小冊子、多重焦点プレパラートのカードセット(製作+撮影:小林)が特殊ビニールケースに収められたもの。

*上記の記事はART BOOK「EXPERIMENT1(発行Gallery MYU)」の左下オレンジ表紙の小冊子から編集抜粋し、画像は新たに付加しています。また、下記テスラについての記事は小林健二著「ぼくらの鉱石ラジオ(筑摩書房)」より抜粋編集しています。

自身が発明した装置の前で本を読むニコラ・テスラ(Nikola TESLA)

自身が発明した装置の前で本を読むニコラ・テスラ(Nikola TESLA)

同調回路の発明者

コイルとコンデンサーによる同調回路は、 2人の研究者によって個別に発想されたと考えられます。その2人とはコヒラー検波器の発明者でもある科学者オリヴァー・ロッジ(1851-1940)と、不遇の天才科学者ニコラ・テスラ(1856-1943)です。

オリヴァー・ロッジは1898年に同調回路(共振回路)の特許を取得し、この発明は1911年にマルコーニ社によって買収されます。彼は英国のリヴァプール大学で物理学の教授をしながら原子核理論を研究していましたが、そのかたわら当時超感覚を有すると考えられていた「パイパー夫人」をも研究し、死後の世界との対話にも興味を持っていたようです。

現代において科学や物理はこのように「霊媒」という現象に対して何ら関与するカテゴリーを持ちませんが、 19世紀から20世紀にかけての科学や物理はむしろ積極的にこれらに関わり、実際的な発明の着想をそこから得ていたこともあるようです。

もう 1人のニコラ・テスラと言えば、磁束密度を表わす単位テスラ(記号T)に名を残す、クロアチア生まれのセルビア人です。

彼は現代電気動力に使われているインダクションモーターの発明者であり、また高周波の高圧を二次側に発生させることのできるテスラコイルと呼ばれる変圧器にもその名を残しています。そして彼は現代の電気学の基礎ともなる交流理論に対しても多くの貢献をしたといわれ、また「テロートマトン」という現在のラジオコントロールシステムの元となる考え方を示したり、「ジアテルミー」「ハイパーサミア」と呼ばれる一種の電磁波健康治療具など実用性の高い発明も多く残しました。

その中には当時、無線通信の同調回路としては特許こそ取得しませんでしたが、多くの共振原理を利用したものがありました。そしてそれはおそらく1892年以前にテラスが電磁波における共振理論をすでに考えていたことを暗に証明していると思えます。

テスラの共振同調機構を使った発想のもっとも顕著な例は「世界システム」でしょう。それは地球を一つの導体としてとらえ、さらに彼の考える地球定常波 earth wave vibrationと共振する高周波振動として電力を電送し、アンテナとアースさえあれば地球のどこにいても空間から随時電力を取り出せる(まるで鉱石ラジオのように)というものです。

この考えはその是非を問われる以前に、実験中止に追い込まれます。それはその考え自体の限界というよりも、地球全体を一つの共同体としてとらえるような視点が国境や国の利害を超えて発想することのできない事業家や国家にとっでは理解しがたく、そのような人意がまず大きな障壁になったといえるかもしれません。

この稀代の大発明家は、無線による通信、電話、あるいは高周波による現代の科学に多大の影響と貢献を与えながらも、なかば意図的に人間の歴史から無視されてきたように思えます。その理由は定かではありませんが、彼のあまりに早すぎたいくつかの発見や発明は、電気の世界に不慣れな一般大衆に必要以上の脅威を与え、そして時に彼よりも世間的にうまく立ち回れる少数の人々によって巧妙に利用されたふしがあります。

彼は20世紀初頭にはカリスマ的な栄光のなかに輝きの人生を送りながらも、1943年1月7日ニューヨークにあるホテルの一室で、一文無しの老人としてこの世を去ることになります。その後、マルコーニとの間で長年争われてきた無線通信の基本特許に関する裁判でテスラ側は勝利を得、「同調回路」の真の発明者として名実ともに認められることとなります。彼の死から半年後、 1943年6月のことでした。

KENJI KOBAYASHI

 

 

奇妙な出土品

ぼくはこれまで自著で、人間と電気の歴史を簡単に書きました。何冊も本を読み、ぼくなりにまとめてみたものです。しかしこれだけが本当の事実かどうか決定してしまうのはむずかしいところもあるのです。

ぼくはここで、現在アメリカはピッツバーグのバークシャー博物館やドイツのベルリンにある博物館に展示されている奇妙な発掘品についてふれてみたいと思います。 1936年から翌年にかけて、オーストラリア人でドイツ国籍を持つケーニッヒはイラクの首都バグダッドの南西郊外クジュト・ラブアで発掘された花瓶に似た小壷をイラク国立博物館の研究所地下室で気にとめます。それはどのようなものなのか確定することができずに、展示されることなく放置された格好でおかれていました。

わかっていることといえば、クジュド・ラブアの丘にあるパルティア国遺跡(約B.C.250-A.C.650)から出土し、そのもの自体は今からおよそ4500年前までさかのばることができるということでした。

小林健二「ぼくらの鉱石ラジオ」

注意深く観察すると、それらは3つの部分より構成されていました。

高さ15 cmほどの明るい黄色の粘土によって作られた部分と、長さ12.5 cm、直径3.8 cmの銅製の円筒状部分、そして長さ8 cmくらいの激しく腐食した鉄製の棒です。そしてこれらはそれぞれアスファルトによって固定され、銅筒はまさに現代のハンダと同じ錫6:鉛4のものを使用して作られ、その内部の壁には電解液が人っていたと思われる酸化物が発見できました。彼はこれらの事実からこの土製の小壺は電池であったと結論します。その後、この奇妙な出土品は先の出土地から遠くないテル・オマールの古代都市セレウキア遺跡からも出上し、それまで以前にもこれに似たものはやはり付近にあるケシフォンでも出土していたことが確かめられます。

ケーニッヒの一見信じがたいこの推論は世界大戦の後、アメリカのゼネラル・エレクトリック社高圧研究所の電気技師ウィラード・グレイと科学史家ウィリー・レイによって確かに認められ、謎はいっそうの深まりを見せたのです。

ぼくは本文で1796年のヴォルタの電堆が電池のはじめと紹介しました。このことはきっと電気の歴史の教科書にみんな同じように書いであると思えます。そしてそのヴォルタの電池の発明によって電気の世界は魔法から科学へと大きく飛躍を遂げたことも確かなことです。

ですからこの4500年前の電池はめまいのするような物語をぼくらに感じさせてくれるはずです。なぜならそれはその時代に電気を扱うことができるシステムが存在したことを暗に示しているからです。確かにやはり古代エジプトのピラミッドについても、光の全く当たらないその内部の壁から照明に使われたはずの明りの煤が少しも発見されていないことや、 8世紀ころピラミッドに盗掘に入った他国の墓泥棒のリストに装飾品としては奇妙な「長い曲げることのできる透明なガラスの管に束ねた金の糸が入っているもの」があるのは謎のひとつとされています。

これらはいったいなにを意味していたのでしょう。

ぼくたち現代に生きる人間はなにもかも知っているような錯覚をしてしまっているのかもしれないと思うことがあります。そしてその中で可能性を見いだすことより、いろいろな限界を感じ始めているようにさえ見受けられます。

でもどうでしょう。この字宙のどこかでは、ぼくらが全く想像もしていない哲学や美学、科学や自由によって、暮らしを営む知性系が存在するかもしれません。あるいはまたいつかぼくたちも何かの拍子にそんなシステムと遭遇するかもしれません。ぼくはそんなときがきたら彼らの世界に驚くばかりではなく、小さなプレゼントを彼らのために携えておきたいと考えています。

そう、それはもちろん鉱石ラジオです。ぼくはかれらにおもちゃみたいな工作物を手渡して、こんなふうに言うのです。

「ぼくらの世界ではこんな小さな鉱物で電磁波に乗ってくる仲間の心をキャッチするんだよ。信じられるかい?」

ルーマニアKAVNIC産の鉱物を用いた鉱石ラジオ(小林健二自作) W70XD50XH120mm

ルーマニアKAVNIC産の鉱物を用いた鉱石ラジオ(小林健二自作)
W70XD50XH120mm

*この記事は、小林健二著「ぼくらの鉱石ラジオ(筑摩書房)」より抜粋編集しております。

KENJI KOBAYASHI

[銀河通信事業]という幻

銀河通信社製の鉱石ラジオなどを作るための部分品

銀河通信社製の鉱石ラジオなどを作るための部分品

[キット開発者から見た側面]

ぼくが子供時代を過ごした昭和三十年代は、今と比べるとそれほど慌ただしくなく、一般的に貧しくありながらも子供にとってはワクワクしたりできる事がたくさんあったように思います。

ビー玉やメンコ、カンケリ、駄菓子屋通いといった遊びはもちろんでしたが、ぼくにとっては科学博物館や模型店に行くことは特別でありました。ただ今と比べれば当時は多かれ少なかれ誰しもが、模型や工作に接する機会が割合あったのです。それは文房具店や本を扱う店でも模型材料を置いているところが多く、また大人用の専門的な模型店もかなりありました。

それ以外にも少年雑誌などには、切手コレクション、天体望遠鏡や顕微鏡、自転車等の広告と共に、必ず模型や科学キットの関係も載っていたものです。ぼくが高校へ通う頃の昭和四十年代も後半になると、理由はいろいろと考えられますが、急激にそれらの店は少なくなって行きました。その頃時々訪れる「友人の誕生日」などのプレゼントを贈る時に、ちょっとしたキットを作ったりすると思いのほかウケがよく、一種の通信販売をする会社のようなスタンプを消しゴムで作ったりしていました。キットと言っても紙ヒコーキであったり、簡単なモーター、あるいは厚紙で作る筆入れや箱といったたわいの無いものばかりでしたし、説明書は手書きやガリ版刷りといった具合です。

屋号は「コバケンコメット社」というように、やはり子供の頃より好きで作っていたプラスチックモデルの日本の飛行機名である、「彗星」「流星」「銀河」といったものをその都度使っていたと言うわけです。

これら美しい名前の飛行機が実は悲しい時代に造られ、そしてたいそうつらい任務に付いていた事も知っていたことが、ぼくにとってそれらの呼称に対して一種の感慨を込めさせていた次第なのです。

鉱石ラジオキット「銀河1型」

鉱石ラジオキット「銀河1型」

やがていつのまにか二十代も後半になった頃より鉱石ラジオに興味を持つようになり、いろいろとオモチャのようなものを作ったり、友人へのプレゼントに「銀河通信社謹製」といった立派な社名?を使ったりするようになったのです。

この半ば冗談のようなママゴトのようなホビーは、十年程前鉱石ラジオの本を書く頃にはすでに結構友だちの中では人づてに伝わっていて、いっそのこと本当にキットを作ってみようと、無謀な考えがよぎることが多くなって行きました。

気持の中では遥かな無いはずの世界に引きずり回されていたわけですから、どうしても空想のお店でありはしてもいろいろと想像してしまう事もあったわけです。

それはまるで子供の頃の模型店のようなあの一見雑然としながらも、木製の引き出しや ガラスケースの中に事細かに木や金属、プラスチック等の材料、モーター、トランス、プラモデルや組み立て工作の数々が整然と並んでいて、そんな中で日永一日店主としていろいろな子供たちや専門的な工作好きと話をしたり、時間の空いた時には自分も工作に熱中する、店自身は古くて小さな木造の小屋のようでも、売り場と住居は別れていて清潔で好きなものばかりに囲まれている、そんな日常を想像して勝手に悦に入っていたのです。

時より届く遠方からの少年たちの注文や質問に手紙を添えて通信販売をする、もしそんな暮しができるのだったらいったいどんなだろうと、まるで余生の生き方を考えるように思い巡らしていたのです。しかしながら何せ合間を縫ってのホビーの延長で今に至り、中々アイテムを増やすことができません。日々の時間の中から最も優先的に注文に答えてゆくのは、想像していた昔の模型製作会社のイメージとは随分異なりますが、時々中学生から励ましの便りをもらったりすると、やはりうれしくなるものです。

既にキットらしきものを作りはじめて三十年余りが経過してきましたが、もしぼくのようなものを「キット開発者」と呼んでもらえるとしたら、この方向の製品を実際的に作ってゆくという事は、なかなか難しいところもあるのは事実です。たとえばキットを木やベークライトの材質で作りたいと思ったことによるパーツの入手不足、あるいは自作しなければならないものも随分とあって、ワークショップなどから急に数百もの注文が入ったりすると、それはもう昔の家内工業のような状態に落ち入る事もあるでしょう。それと発足時より採算をあまり考慮していなかったのが、開発困難さを決定的にする事もあるのです。

只、出来る限り合理性や科学原理の説明的なキットではなく、また一時代に対する懐古的なだけでもないようなものを目指しながら新しいキットを作り足して行きたいと願っています。

インターネットウェブに銀河通信を立ち上げて今年でおよそ七年になります。隠れているようなサイトなのにどこかから訪れる人々たちがいて、そのためこれからもキット開発?の継続を考えています。

本当は「風のフジ丸」から「分け身の術」を教えてもらえればとも思うのですが(笑)、今まで通りゆっくりとやっていこうとも思っています。しかし、いつかは何処かの町の片隅にて駄菓子屋とも模型屋とも見える風な木の造りで、小さなショーウインドウと硝子の入った引き戸の建具のある幻のお店を作ってみたいと夢みています。水色のトタンの看板には青色のペンキで「少年少女向模型各種 不思議製品多数」等と書かれてあり、その横には小さく「銀河通信社」と書いてあるような・・・。

2006年春

(一部当初の原稿を編集しています)

当初の頃などはガリ版刷りの説明書が多かったので、今でも多少その感じを残した手書きのものにしている。しかしぼく自身、字が下手なので、読みづらそうなものにはタイプ文字に変えてある。

当初の頃などはガリ版刷りの説明書が多かったので、今でも多少その感じを残した手書きのものにしている。しかしぼく自身、字が下手なので、読みづらそうなものにはタイプ文字に変えてある。

 ゲルマニウムダイオードとバリコンのセットにはエナメル線が付いていて、トイレットペーパーの芯などに巻いてコイルにしたり、それぞれ工夫して作るようになっている。右下は作例の一つ。

ゲルマニウムダイオードとバリコンのセットにはエナメル線が付いていて、トイレットペーパーの芯などに巻いてコイルにしたり、それぞれ工夫して作るようになっている。右下は作例の一つ。

キットのパーツ類などを整理したりダミー作りのための場所。自分が[キット開発者]という幻想に入り込むためにあるような一角かもしれない。

キットのパーツ類などを整理したりダミー作りのための場所。自分が[キット開発者]という幻想に入り込むためにあるような一角かもしれない。

実際にキットを製作する上でいろいろな自作した道具が必要と成る。例えばエナメル線を一定の長さに巻き取るための治具の一例。

実際にキットを製作する上でいろいろな自作した道具が必要と成る。例えばエナメル線を一定の長さに巻き取るための治具の一例。

パネルに多数の違った径の穴をあける時にも治具は必要となる。

パネルに多数の違った径の穴をあける時にも治具は必要となる。

[銀河1型]と名付けた製品のプロトタイプ。厚紙や色紙、あるいは手で描いたりして様子をみる。

[銀河1型]と名付けた製品のプロトタイプ。厚紙や色紙、あるいは手で描いたりして様子をみる。

最終的に細かな部分まで決定したら、印刷所に出す原稿や製函屋への金型の発注、そして部品の調達を確認してキットを製品化してゆく。

最終的に細かな部分まで決定したら、印刷所に出す原稿や製函屋への金型の発注、そして部品の調達を確認してキットを製品化してゆく。

[銀河1型]の内部。スパイダー式コイルの巻き枠に色の違ったエナメル線で巻の異なる部分を平易にと考えたが、段々と色エナメル線の入手が難しくなってきた。

[銀河1型]の内部。スパイダー式コイルの巻き枠に色の違ったエナメル線で巻の異なる部分を平易にと考えたが、段々と色エナメル線の入手が難しくなってきた。

[彗星1型]のキットは鉱石ラジオが生まれた当時のように黒ベークライト製のパネルやツマミなどを使用し、筐体は木製にしている。

[彗星1型]のキットは鉱石ラジオが生まれた当時のように黒ベークライト製のパネルやツマミなどを使用し、筐体は木製にしている。

彗星1型の検波器は真鍮とタングステンのスプリングでできている。

彗星1型の検波器は真鍮とタングステンのスプリングでできている。

鉱石ラジオキット[彗星1型]

鉱石ラジオキット[彗星1型]

鉱石ラジオキット[彗星2型]

[彗星2型]は当初ある博物館でのワークショップのために作ったものなので、作る人たちにもなるべく楽しんでもらえるようにとフロントパネルはベニヤ板にし、好きに色を塗って仕上げてもらうようにと考えた。

検波器をいかにして簡単に作れないかと工夫した例

検波器をいかにして簡単に作れないかと工夫した例

鉱石ラジオキット[銀河3型]

鉱石ラジオキット[銀河3型]

銀河3型の内容

銀河3型の内容

[銀河3型]の出来上がり

[銀河3型]の出来上がり

銀河3型のプロトタイプの裏側、穴の位置決めのケガキ線などが見える。

銀河3型のプロトタイプの裏側、穴の位置決めのケガキ線などが見える。

[銀河2型]のキット内容

[銀河2型]のキット内容

[銀河2型]を作ってみる。まずはサンドペーパーでコイルを巻くための紙筒のフチや板の表面や角をなめらかにすることから始める。

[銀河2型]を作ってみる。まずはサンドペーパーでコイルを巻くための紙筒のフチや板の表面や角をなめらかにすることから始める。

コイルの巻き始めや巻き終わりの固定のため、穴を開けているところ。すでに位置は鉛筆で印しがしてある。写真では見やすくするために大きめの穴があいている。

コイルの巻き始めや巻き終わりの固定のため、穴を開けているところ。すでに位置は鉛筆で印しがしてある。写真では見やすくするために大きめの穴があいている。

ニスを巻き筒に塗っているところ。このようにすることでベークライト製の筒のような感じにもなり、強度が出る。薄く何回もウラオモテを乾かしては塗るようにする。 キットに筆は付属していない。乾かす間、筆はラップで包んでおき、洗浄には燃料用アルコールを使う。

ニスを巻き筒に塗っているところ。このようにすることでベークライト製の筒のような感じにもなり、強度が出る。薄く何回もウラオモテを乾かしては塗るようにする。
キットに筆は付属していない。乾かす間、筆はラップで包んでおき、洗浄には燃料用アルコールを使う。

木の板にもそれぞれ3回塗ってもまだ少しニスが残っている。とにかく時間をかけてニスを塗り終えてから、最低1日以上置いてから次の作業に入る。じっくり仕上げていきたいキットである。

木の板にもそれぞれ3回塗ってもまだ少しニスが残っている。とにかく時間をかけてニスを塗り終えてから、最低1日以上置いてから次の作業に入る。じっくり仕上げていきたいキットである。

エナメル線を巻き始める。方向はどちらでも構わないが、ゆっくり丁寧に巻くのがコツ。このコイルはソレノイドコイルと呼ばれるタイプで一見スパイダーまきのものよりありふれて見えるが、特性はよく、ただ巻くことも思いのほか難しい。ほぐしたエナメル線は写真のように手に通したりして絡まないように注意する。

エナメル線を巻き始める。方向はどちらでも構わないが、ゆっくり丁寧に巻くのがコツ。このコイルはソレノイドコイルと呼ばれるタイプで一見スパイダーまきのものよりありふれて見えるが、特性はよく、ただ巻くことも思いのほか難しい。ほぐしたエナメル線は写真のように手に通したりして絡まないように注意する。

図のようにタップを作る。その後もう一度タップを作り巻き上げてゆく。

図のようにタップを作る。その後もう一度タップを作り巻き上げてゆく。

残してあるニスを塗って巻きを固定する。そして1日以上乾燥させる。

残してあるニスを塗って巻きを固定する。そして1日以上乾燥させる。

コイルの出来上がり

コイルの出来上がり

コイルを板に取り付ける位置に付属の接着剤でスペーサーの厚紙を貼る。

コイルを板に取り付ける位置に付属の接着剤でスペーサーの厚紙を貼る。

バリコンボックスの底板を外して画鋲で固定し(この時にボンドの残りを併用しても可)、検波器となる部分も穴にはめ込む。

バリコンボックスの底板を外して画鋲で固定し(この時にボンドの残りを併用しても可)、検波器となる部分も穴にはめ込む。

ターミナル部分へのためにリング状にエナメル線を加工したり、ハンダ付けして余分な線をカットしておく。

ターミナル部分へのためにリング状にエナメル線を加工したり、ハンダ付けして余分な線をカットしておく。

検波器の針となる部分はすでに出来上がっているので、説明図にしたがってあらかじめ曲げておく。

検波器の針となる部分はすでに出来上がっているので、説明図にしたがってあらかじめ曲げておく。

検波器はアンテナやアースを指定通りにした後、クリスタルイヤフォンで聞きながら細かな調整をする。

検波器はアンテナやアースを指定通りにした後、クリスタルイヤフォンで聞きながら細かな調整をする。

[銀河2型]の完成の一例(左)とおよそ10年前に作ったプロトタイプ

[銀河2型]の完成の一例(左)とおよそ10年前に作ったプロトタイプ

これからはもっと本格的なキットも開発してみたいと考えている。例えば金属製の鍛連エアバリコンや鉱石ラジオの初期に付いていたダイヤルを使ったものなど。

これからはもっと本格的なキットも開発してみたいと考えている。例えば金属製の鍛連エアバリコンや鉱石ラジオの初期に付いていたダイヤルを使ったものなど。

二重絹巻線などといった材料を用いたキットも考案してみたい

二重絹巻線などといった材料を用いたキットも考案してみたい

二重絹巻線は裸銅線の上に二重に絹糸を巻いて絶縁しているものだが、もはや国内ではバリコンやダイヤルと同様、まとまった量を確保するのは難しい。

二重絹巻線は裸銅線の上に二重に絹糸を巻いて絶縁しているものだが、もはや国内ではバリコンやダイヤルと同様、まとまった量を確保するのは難しい。

検波器用にと考えている透質な鉱石は、品質や大きさを一定に保つのは難しい。しかし、それほどの数は製作できないが求める方の声が多く、限定でいずれ発表したいと考えている。

検波器用にと考えている透質な鉱石は、品質や大きさを一定に保つのは難しい。しかし、それほどの数は製作できないが求める方の声が多く、限定でいずれ発表したいと考えている。

結晶のキットなどを計画する時には、なるべく安全で美しく誰にでも作れるようにと考えるため、たくさんの薬品を試すことになる。新品の試薬は保持性の高いポリ容器に入って売られているが、自分の趣味でわざわざガラス製の壜に入れ替えて使用している。 (もちろん薬品お特性に応じて密閉性を考慮している)

結晶のキットなどを計画する時には、なるべく安全で美しく誰にでも作れるようにと考えるため、たくさんの薬品を試すことになる。新品の試薬は保持性の高いポリ容器に入って売られているが、自分の趣味でわざわざガラス製の壜に入れ替えて使用している。
(もちろん薬品の特性に応じて密閉性を考慮している)

[赤色結晶育成キット] (ルビーのように光に透かすと赤色に輝く結晶が育成できる)

[赤色結晶育成キット]
(ルビーのように光に透かすと赤色に輝く結晶が育成できる)

[硝子結晶育成キット]の内容

[硝子結晶育成キット]の内容(現在で攪拌棒はプラスチック製のスプーンに変わっている)

説明書にしたがって湯と白色の粉を容器で溶かす

説明書にしたがって湯と白色の粉を容器で溶かす

小瓶に入った「色の素」と呼ばれる薬品を入れる。多ければ針状に、少なければ塊状に結晶する。

小瓶に入った「色の素」と呼ばれる薬品を入れる。多ければ針状に、少なければ塊状に結晶する。

急冷しないようにタオルなどをかけ、温度変化の少ない場所に静かに置いておく。

急冷しないようにタオルなどをかけ、温度変化の少ない場所に静かに置いておく。

1日以上放置する途中で、あまり容器を動かしてはいけなが、母岩に結晶が出来始めたところを撮影してみた。

1日以上放置する途中で、あまり容器を動かしてはいけなが、母岩に結晶が出来始めたところを撮影してみた。

ペットボトルの底で結晶した硝子結晶の一例

ペットボトルの底で結晶した硝子結晶の一例

硝子結晶と言っても硝子そのものではないが、ガラスの容器の中で育成を続けてもおもしろい。

硝子結晶と言っても硝子そのものではないが、ガラスの容器の中で育成を続けてもおもしろい。

*2006年のメディア掲載記事より抜粋し一部編集しております。

reblog:銀河通信より転載「幻的銀河通信事業」

KENJI CHANNEL

 

 

人工結晶を作る

ロッシェル塩(酒石酸ナトリウムカリウム四水和物)を使ってクリスタルイヤフォンを作ることはかなり難しそうですが、ロッシェル塩の大きな単結品を使って、この結晶がピエゾ電気効果(正確にはピエゾ圧電気逆効果)によってほんとうに音を発することを確かめることはできます。それにはまずロッシェル塩の単結晶を作る必要があります。実はこの結晶作りだけでも十分に興味深く楽しいものなので、ごく簡単に紹介してみたいと思います。

市販されている酒石酸ナトリウムカリウムは透明な1mm弱のザラメのような感じのもので、なめると塩っぱいような少し苦いような味がして、溶けるときにちょっと冷たさを感じます。

市販されている酒石酸ナトリウムカリウムは透明な1mm弱のザラメのような感じのもので、なめると塩っぱいような少し苦いような味がして、溶けるときにちょっと冷たさを感じます。

水100gを30℃ にしてそこに200gのロッシェル塩を入れ、溶けるだけ溶かしてシャーレなどの平たいお皿に溶けた上澄みだけを入れ、それを発泡スチロールなどの箱に入れ静 かにおいておきますと、四角い平たい結品が析出してきますので、その中から形のよいものを選びます。

水100gを30℃ にしてそこに200gのロッシェル塩を入れ、溶けるだけ溶かしてシャーレなどの平たいお皿に溶けた上澄みだけを入れ、それを発泡スチロールなどの箱に入れ静かにおいておきますと、四角い平たい結品が析出してきますので、その中から形のよいものを選びます。

この際気温が高い夏期などには、40℃ の水にもっとたくさん溶かしてもよく、共にほぼその温度における飽和溶液にして使います。少し時間がかかりますが、室温と同じ温度の水に少しずつロッシェル塩を入れて溶け残りが出てきたところで飽和溶液と見なしてもけっこうです。ただ、あまりにも溶液温度と保管する所とに温度差があったり、保温して徐々に温度を下げていかないと過冷却の状態になってしまい、一気に細かな細品が析出してしまい、失敗となります。この場合はもう一度溶かしてやり直します。

小林健二「ぼくらの鉱石ラジオ」

この作業でいい形のものが最初10個くらい見つけられたら溶液をガーゼなどで漉して、 キラキラしたとても細かい結品があればほんの少し暖めてこれを溶かして熱がとれた後、さっきの結晶(種結品と呼びます)をその中に入れ、また成長させてゆきます。

そしてだんだんと大きくして、欠けたり、小さな結品がくっついてしまわないものを選んで繰り返してゆきます。

そしてだんだんと大きくして、欠けたり、小さな結品がくっついてしまわないものを選んで繰り返してゆきます。

このように入工結晶を作っていく方法には基本的に飽和点を下げることで結晶を析出させていく冷却法と、溶媒を揮発させ溶質濃度を上げながら結晶析出をうながす蒸発法とが代表的です。

ロッシェル塩については種結品を冷却法で作り、その後を蒸発法で行うとぼくはよいと思います。うまくなると10 cmくらいの大きなものも作れると思いますので、いろいろ工夫してやってみてください。

ロッシェル塩については種結晶を冷却法で作り、その後を蒸発法で行うとぼくはよいと思います。うまくなると10 cmくらいの大きなものも作れると思いますので、いろいろ工夫してやってみてください。

冷却法で成長を促進する場合も、できる限り少しずつ温度が下がるようにしないと失敗します(理想的には1日で0.1度くらいの下がり具合)。そして大きな結晶を作るには何日もかかります。温度管理に自信がない場合は蒸発法で大きくすることをすすめます。この場合は種結晶があらかじめ3~ 5 mmくらいになったものを使い、結晶を作ろうと思うところの室温と同じ温度の飽和溶液を育成母液として使い、ゴミやチリが人らないように心がけで気長にやることです。育成母液に種結晶を入れ10時間~ 1日おきに観察して、種結晶のまわりのところなどにたくさん小さな結晶が析出してくるようならガーゼなどで漉して、きれいになった母液に再び種結晶を戻すことを繰り返します。

大きな結晶ができました。

大きな結晶ができました。

そして大きな結晶ができたら布などで液を拭いよく乾かしたあと、いちばん広い向かい 合う両面に錫箔あるいはアルミ箔を貼り、そこにトランジスタラジオのイヤフォンからの線、あるいはステレオのヘッドフォンやスピーカーの端子からの線をそれぞれに接触させて、少しづつ音を大きくしていくと、結晶から音が出てくるのを確認できるでしょう。

そして大きな結晶ができたら布などで液を拭いよく乾かしたあと、いちばん広い向かい合う両面に錫箔あるいはアルミ箔を貼り、そこにトランジスタラジオのイヤフォンからの線、あるいはステレオのヘッドフォンやスピーカーの端子からの線をそれぞれに接触させて、少しづつ音を大きくしていくと、結晶から音が出てくるのを確認できるでしょう。

そして共鳴箱やピンと張ったグラシン紙(ブーブー紙)に取り付けるともっと大きくなります。

もしできるなら、結晶を薄くスライスしたりさらにはそのスライスしたものを貼り合わせたりすると効果的です。もしスライスして貼り合わせることができるなら、 2枚のロッシェル塩の板のあいだにも錫箔を入れて貼り、その端と両側の箔をショートした部分にオーディオ信号を印加するといいでしょう。

ぼくはダイヤモンドのブレードのついた石やガラスを切るバンドソーでロッシェル塩の飽和溶液をかけながら切りますが、こんなことは一般的ではありません。しかし時間をかけるなら、水でしめらせた糸を張った糸ノコで少しずつカットすることができ、この方法がいちばんきれいに切ることができます。

写真6は左から単結品がいくつか群品となったロッシェル塩の大きな結品、まん中は 人工水晶(自作ではありません)、そして右は育成母液のなかに石やなにかの塊(この場合はアンチモンの塊)を入れておくときれいな鉱物標本のようなものを作ることができる例です。

左から単結晶がいくつか群品となったロッシェル塩の大きな結晶、まん中は人工水晶(自作ではありません)、そして右は育成母液のなかに石やなにかの塊(この場合はアンチモンの塊)を入れておくときれいな鉱物標本のようなものを作ることができる例です。

*この記事は、小林健二著「ぼくらの鉱石ラジオ(筑摩書房)」より抜粋編集しております。

reblog:銀河通信より

HOME

KENJI KOBAYASHI

 

 

 

アンテナとアースについて

アンテナとアースについて

鉱石ラジオを聴く場合、設備としてもっとも大事なのはアンテナとアースです。とは言っても昔の本に出てくるように大きく立派な空中線を敷設することは、現代の住宅事情を考えると不可能に思えますので、簡単にできる方法から紹介してみましょう。

1)100V電源コードからとる方法

まずビニール被覆線を用意します。見かけで1~ 2 mmくらいの細いものがいいと思いますが、基本的にはなんでも構いません。

写真のように電灯線、たとえばスタンドや電化製品の電源コードに20~ 40回くらい巻きつけてその端をアンテナとして利用する方法です。これは電灯線の中によぎれこんでいる高周波電流を、巻き付けたビニール線をコンデンサーとして働かせることで拾いだそうとするものです。安全でしかも手軽なので試してください。感度が悪い場合、巻き数や電源コードヘの密着状態をいろいろ変えてみてください。

写真のように電灯線、たとえばスタンドや電化製品の電源コードに20~ 40回くらい巻きつけてその端をアンテナとして利用する方法です。これは電灯線の中によぎれこんでいる高周波電流を、巻き付けたビニール線をコンデンサーとして働かせることで拾いだそうとするものです。安全でしかも手軽なので試してください。感度が悪い場合、巻き数や電源コードヘの密着状態をいろいろ変えてみてください。

2)家庭用100V電源からとる方法

これは家庭用の100Vの電源から直接電波を捕らえる方法です。

写真の中央に見えるのは昔のアンテナソケットと言われるもので、中にコンデンサーを直列にハンダ付けして作られています。これはコンセントのどちらか一方に差し込んで使います。コンデンサーはマイカコンデンサーやセラミックコンデンサーのような高周波特性のよいタイプを使い、容量は100 pFくらいで耐圧125V以上、できたら200Vくらいの製品を選びます。 また市販のコンセントプラグを利用して2本の金属の足のうち一方には何も接続しないで、もう一方にコンデンサーを直列に入れてアンテナとすることもできます。 またもし古いタイプのコンセントプラグが手に入れば、この方が内部が広いのでコンデンサーを入れやすいかもしれません(写真右)。

写真の中央に見えるのは昔のアンテナソケットと言われるもので、中にコンデンサーを直列にハンダ付けして作られています。これはコンセントのどちらか一方に差し込んで使います。コンデンサーはマイカコンデンサーやセラミックコンデンサーのような高周波特性のよいタイプを使い、容量は100 pFくらいで耐圧125V以上、できたら200Vくらいの製品を選びます。
また市販のコンセントプラグを利用して2本の金属の足のうち一方には何も接続しないで、もう一方にコンデンサーを直列に入れてアンテナとすることもできます。
またもし古いタイプのコンセントプラグが手に入れば、この方が内部が広いのでコンデンサーを入れやすいかもしれません(写真右)。
写真上部の四角い箱は裏側にプラグの足が出ていてこのままコンセントに入れると表側のところからアンテナとして利用できるというもので昭和30年代のものです。中にはそれぞれコンデンサーとインダクター(コイルの一種)が直列に入っています。このようにコンデンサーを入れると50~ 60 Hzの低い周波数では100 pFのコンデンサーを通ることができないので高い周波数の電流だけを取り出そうとするものです。

3)室内アンテナ1(卓上アンテナ)

鉱石ラジオが使われていた時代の室内アンテナは写真のようなタイプのものが多く、主に真空管式の受信機に使われていました。この自作した室内アンテナは高さは約72 cmで腕の長さが1本30 cm、張ったワイヤーが約23mと小さなものです。作例では0.08/30の絹巻リッツ線というものを使用しましたが、0.6mmくらいのエナメル線でも同じです。 あまり大きくなると感度はよくなっても置き場所に困ると思ったからですが、これでもそれなりにアンテナとして働いてくれます。ほんとうはもっと巻き数を増やしてワイヤーの長さをかせいだ方がよいでしょう。

鉱石ラジオが使われていた時代の室内アンテナは写真のようなタイプのものが多く、主に真空管式の受信機に使われていました。この自作した室内アンテナは高さは約72 cmで腕の長さが1本30 cm、張ったワイヤーが約23mと小さなものです。作例では0.08/30の絹巻リッツ線というものを使用しましたが、0.6mmくらいのエナメル線でも同じです。
あまり大きくなると感度はよくなっても置き場所に困ると思ったからですが、これでもそれなりにアンテナとして働いてくれます。ほんとうはもっと巻き数を増やしてワイヤーの長さをかせいだ方がよいでしょう。

作り方としては9mm角の硬めの本(この場合はラミン)を使って十字に組み、木の端に切り込みのスリットを10 cmくらい切り、垂直方向に16~ 20個穴をあけておき ます。そこにちょうどコイルを巻くように鋼製の釘や竹ひごを入れながら内から外へ向かってワイヤーを巻いていきます。実用性だけなら大きめの段ボール箱にぐるぐる巻いたものでもかまわないと思います。

作り方としては9mm角の硬めの本(この場合はラミン)を使って十字に組み、木の端に切り込みのスリットを10 cmくらい切り、垂直方向に16~ 20個穴をあけておき
ます。そこにちょうどコイルを巻くように鋼製の釘や竹ひごを入れながら内から外へ向かってワイヤーを巻いていきます。実用性だけなら大きめの段ボール箱にぐるぐる巻いたものでもかまわないと思います。

使い方としては内でも外でもワイヤーの端から線を引いてラジオのアンテナとして使う他、これを一つのコイルと見なし、両端にバリコンを並列に接続して使うこともできます。もしこの室内アンテナを2m角くらいの大きさで、60~ 70mくらいワイヤーを巻いて作ると室外アンテナに劣らないようなものもできるでしょう。また、この種のアンテナはアースをつけなくても感度がとれる場合があります。ただ、アンテナの向きによって感度が違ってくるので注意しましょう。

4)室内アンテナ2

小林健二「ぼくらの鉱石ラジオ」

また室内アンテナと言っても卓上型だけでなく、図のように部屋の天丼に対角線にビニール線を張ったり、その長さを稼ぐために天丼や壁にぐるぐるとコイル状に線を巡らせるだけでもアンテナの役目をはたします。

また室内アンテナと言っても卓上型だけでなく、図のように部屋の天丼に対角線にビニール線を張ったり、その長さを稼ぐために天丼や壁にぐるぐるとコイル状に線を巡らせるだけでもアンテナの役目をはたします。

5)室外アンテナ

室外アンテナは庭の広い一戸建てや郊外の地域でないと無理のようですが、考え方によってはできないこともありません。たとえばもしマンションやアパートであれば自分の部屋から外部の壁づたいにそれほど重くないおもりをつけて線(よく電源のコードなどに使われる平行線をさいたものなど)を重らしたり、家の周りに日立たないように通わせてみたり、工夫しだいではいろいろとできると思います。ただ、もちろん安全で他人の迷惑にならない範囲で行ってください。

また同軸ケーブルやビデオデッキのアンテナ出力など、他にもいろいろとアンテナの役目のできるものがあるので試してみてください。

空中線(室外アンテナ)のいろいろ

空中線(室外アンテナ)のいろいろ

ー空中線の実際

鉱石ラジオにとって、空中線は部品というより設備に近い側面を持っていて、空中線のよしあしによっては受信できない場合もあるのです。鉱石ラジオが一般的であった時代は、都市においてもゆったりとした空中線を張ることができましたが、現在のように庭もなく、またビルの内側は電波からシールドされていて室内アンテナもあまり役に立たない環境のところもあります。このような現状ですから、昔のようには空中線を張ることはできないまでも、どのような空中線が効果的かを知るために、簡単に説明してみたいと思います。

まず電波によって空中線とアースの間に発生する電圧は、その空中線の高さと電界強度に比例します。ここで発生する電圧によって空中線に電流が流れますが、そのとき流れる電流は空中線の各部によって違い、上方の先端部より下方のアースに近いほど取り出せる電流は多くなります。空中線の導線と大地の間はコンデンサーになっていて、それぞれのコンデンサーに流れる電流は空中線の基部に集まる性質を持っているため、 下方にいくにしたがい電流は多くなります。

(A)垂直型空中線と(B)逆L字型空中線の電流の分布を仮面積で示すと図のようになります。

(A)垂直型空中線と(B)逆L字型空中線の電流の分布を仮面積で示すと図のようになります。

電流は空中線の先にいくほど少なくなるので、実際の高さより何割か低く見なければなりません。電波と電気力線はアースに垂直なので、空中線に電圧が発生するのはおもに垂直部分と考えられます。本来、水平部分は電圧を発生するには役立たないと考えられていますが、垂直部分の電流分布を増加して実効高を増すはたらきをするようです。

このように片方を接地した空中線は、波長の4分の1の実効高が最大感度となるのですが、たとえば1000kHzの電波であれば、計算すると波長約300mですから、その4分の1としても75mにもなってしまいます。

ですからできるかぎり高いほうがよく、またそこから横に張った水平の空中線でさらに補ってあげる形になるのです。以上のような空中線は開回路式空中線と呼ばれます。

ロジャース式埋没式空中線 変った空中線 地下型空中線

ロジャース式埋没式空中線
変った空中線(地下型空中線)

ー室内アンテナ

実際に屋外に空中線を張るのが難しい場合に有効なのが室内アンテナです。それには以下のようなタイプのものがあります。ループアンテナ、枠形アンテナ、スパイダー形アンテナ、そしてバーアンテナ(μ (ミュー)アンテナともいう)などでこれらはアンテナコイルの一種とも考えられます。やはり巻いた枠が大きければ大きいほど効力はよく、あまり小さいとアンテナとしては役をなさないときがあります。また、このようなアンテナは電波の到来する方向に対して指向性があり、常に感度の最大になる位置を探すことが重要です。

また室内アンテナは、その構造上コイルとしての自己インダクタンスを持っているので、ラジオの内部にある同調回路のコイルとの関係を考慮しなければなりません。小判型といわれるタイプは、導線をニスなどで同めたものです。枠型は木や厚紙、ときにはベークライトなどで作ったもので、ラジオの本体に巻き付けるようにしたりします。スパイダー型にはいろいろな形があります。バーアンテナタイプはコイルの中に磁性体を入れることでインダクタンスを上げ、磁束密度を上げるようにしたものですが、鉱石ラジオにはあまり大きなものは適していません。これらのアンテナは、電波が発射してくる方向に対して直角になるときに最大感度を持ちます。このようなタイプを閉回路式空中線と言っています。

室内アンテナのいろいろ

室内アンテナのいろいろ

ー電灯線アンテナ

家庭に来ている100Vの電流は、電灯線とも言われますが、みなさんもご存じのように大きな電信柱を伝わってきます。その交流の100V電流中に、電波が電線によって共振して混入していると考えられます。もちろんこのままアンテナとして使用して鉱石ラジオに直接つないでしまうと大変なことになるので、前にもお話ししたコンデンサーを間にはさんで使います。

コンデンサーはその容量によって50Hzの低い周波数の電圧はほとんど通さず、高周波の信号の乗った電流だけを通しますので、アンテナとして使用できるのです。実際のやり方は上記を参照してください。

6)アースについて

昔の本で接地をすると言うと、地面に穴を掘って金属の板や棒を埋めそれから引き出し線をつけてアース線としました。このアースとの電気的な関係はいまでも変わっていません。しかしなかなか地面を掘れる人ばかりいないでしょう。またよく言われる水道管への接続ですが、これも昔は鉄管や鉛管を使っていましたが、現在ではほとんどが塩化ビニル管になり、アース線を取ることはできません。しかし昔には無くて現在の方がアースを取りやすくなっている部分も多いのです。

たとえば電気洗濯機や電気乾燥機などのモーターを使用する家庭電化製品は、緑色の被覆のアース線がついていて、それらの機器をおくところにはたいていアースが来ています。あるいはコンピューターのコンセントプラグは接地付きプラグが多く、それを差し込むコンセントのところにはアースラインが来ています。

ーアースについて

アースとは接地をする、すなわち大地に回路の一端を直接つけて大地との電位をまったくの0(ゼロ)ボルトに近づけるものです。空中線の回路にしても、回路という以上それはめぐりめぐってなにがしかの力を作用するものなので、アンテナや空中線からまるで雨水のように力が入ってきても、その出口がつまっていたのでは少しも流れにはならないということなのです。ですから、その流れの口が小さく抵抗があるより、少しでも大きく抵抗が少ないほうが力を十分に使用できるというわけです。ですから、昔からアースをいかにしてよくとることができるかは重要なポイントです。

ー昔のアースの取り方

昔のアースの取り方には、 30 cm平方、厚さ1mmくらいの銅版を1mくらい掘り下げた地面に湿らせた炭などといっしょに埋め、太めの銅版1~ 2 mmくらいのものをしっかリハンダ付けしてアース線としたり、銅の大きなグリッド(格子)を埋めたり、アース棒といわれる4~ 50mくらいの導線のついた太さ12mmくらいの炭素棒を地面に打ち込んだりする方法もあります。

また、水道管に直接導線を巻き付けてアースとすることもできますが、この場合は接点の抵抗を少しでも少なくするため、しっかりと締めつけることが重要です。

また特殊な方法としては、大地が乾いていたり、うまくアースがとれないときはカウンターポイズ(counter poises)といわれる特殊な方法をとることもあります。カウンターポイズとは、地上30 cmくらいの高さのところに10~ 15mくらいの絶縁性の高いゴム、あるいはビニール被覆の1~ 2 mmくらいの鋼、電灯線用コードを張り、大地とは絶縁をしてあるものです。これは必ずしもアンテナの下に設置しなければならないということはありません。普通のアースよりもかえって分離性がよくなる場合も多いようです。

結局、空中線回路は、コンデンサーのうちの一方を空中線として、もう 一方を接地してアースとして受信効果を高めているわけですがアース自体がよくとれなければかえって聞こえにくいので、必ずしも接地だけがアースの方法というわけではありません。

ー安全装置

もしいままで説明したように、昔のようないい状態で空中線が張れたとすると、こんどは安全装置についても考えなければなりません。それは落雷の危険性がゼロではないからです。昔はアレスターと呼ばれる避雷器がありましたが、今はあまり見かけませんので、簡単な写真のようなスイッチで空中線の引き込み線を受信機とアースとに切り替えられるようにセットしておいて、受信機を使用する時は受信機のほうへ、それ以外はアースのほうへ接続しておけば、万一落雷があっても空中線からアースヘと流れます。

アレスターのいろいろ

アレスターのいろいろ

アンテナスイッチ

アンテナスイッチ

小林健二「ぼくらの鉱石ラジオ」

*この記事は、小林健二著「ぼくらの鉱石ラジオ(筑摩書房)」より抜粋編集しております。

HOME

KENJI KOBAYASHI

鉱石ラジオの実際(その3)

前回の続きです。

鉱石ラジオとは、いったいどのような姿をした受信機だったのでしょう。ぼくのコレクションのなかから、当時のものをいくつかお目にかけたいと思います。

英国製でメーカーはわかりませんが、 1920年代のものです。内部には大きなコイルが1つとマイカの固定コンデンサーが入っています。検波器の内部には、見た目には方鉛鉱と思える人工鉱石が入っています。H180× W225× D152(mm)

英国製でメーカーはわかりませんが、 1920年代のものです。内部には大きなコイルが1つとマイカの固定コンデンサーが入っています。検波器の内部には、見た目には方鉛鉱と思える人工鉱石が入っています。H180× W225× D152(mm)

検波器の拡大

検波器の拡大

この大きなコイルが特徴的なものは英国製です。メーカーは不詳ですが、一種のキットのようにして1930年代に米国でも同じタイプのものが多く造られました。 検波器には黄鉄鉱が使われています。H200X W213× D170(mm)

この大きなコイルが特徴的なものは英国製です。メーカーは不詳ですが、一種のキットのようにして1930年代に米国でも同じタイプのものが多く造られました。
検波器には黄鉄鉱が使われています。H200X W213× D170(mm)

これはラジオの部品のパーツです。左のコイルはチューニングコイルでまん中の真鍮の工をうごかして使います。右のものは米国フィルモア社製のさぐり式検波器のキットです。

これはラジオの部品のパーツです。左のコイルはチューニングコイルでまん中の真鍮の工をうごかして使います。右のものは米国フィルモア社製のさぐり式検波器のキットです。

米国ブローニングドレイク社製で1920年代のものです。ヴァリオカップラーを使ってあります。検波器はガラス製のカップの付いたかわいらしいものです。H163× W152 X D178(mm)

米国ブローニングドレイク社製で1920年代のものです。ヴァリオカップラーを使ってあります。検波器はガラス製のカップの付いたかわいらしいものです。H163× W152 X D178(mm)

検波器の拡大

検波器の拡大

英国の1920年代のメーカー製でとても端正に造られています。検波器は接合 型で感度もよいものです。 H195X175X175(mm)

英国の1920年代のメーカー製でとても端正に造られています。検波器は接合
型で感度もよいものです。
H195X175X175(mm)

このように立派に見える昔の鉱石ラジオもたいていは中にコイル1つだけということが多く、かえって不思議な感じがすることがあります。

このように立派に見える昔の鉱石ラジオもたいていは中にコイル1つだけということが多く、かえって不思議な感じがすることがあります。

英国でアマチュアによって1940年代に製作されたと思われるものです。パーツは自分の好きなものを集めて作ってあります。 H225× W233 X D163(mm)

英国でアマチュアによって1940年代に製作されたと思われるものです。パーツは自分の好きなものを集めて作ってあります。 H225× W233 X D163(mm)

検波器はとりわけ高級品で、鉱石には黄鉄鉱が使用してあります。

検波器はとりわけ高級品で、鉱石には黄鉄鉱が使用してあります。

英国のアマチュアが1950年代に製作したと思われるものです。当時の金属製 のフィルムケースや試験管を使って作っています。中にはコイルと小さなヴァリ コンが入っています。H140× W130×D130(mm)

英国のアマチュアが1950年代に製作したと思われるものです。当時の金属製 のフィルムケースや試験管を使って作っています。中にはコイルと小さなヴァリ コンが入っています。H140× W130×D130(mm)

米国のミゼットラジオ社製のもので、 1939年から造られ始めたものです。中には木の角棒に巻いたコイルがあり、その本に穴をあけて中に検波器を埋め込んでありますが、外観はともかくメーカー製のイメージからは想像しにくいほど手作りの感じです (ヘッドフォンはフィルモア社製)。H53XW80×D48(mm)

米国のミゼットラジオ社製のもので、 1939年から造られ始めたものです。中には木の角棒に巻いたコイルがあり、その本に穴をあけて中に検波器を埋め込んでありますが、外観はともかくメーカー製のイメージからは想像しにくいほど手作りの感じです (ヘッドフォンはフィルモア社製)。H53XW80×D48(mm)

フィルモア社製ヘッドフォンと接続したミゼットラジオ。

フィルモア社製ヘッドフォンと接続したミゼットラジオ。

米国のミゼットラジオ社製のラジオの内部

米国のミゼットラジオ社製のラジオの内部

これは1925年製の英国ジェコフォン“ジュニア"と呼ばれるものです。方鉛鉱を用いた検波器で精度高く造られています。通常300~ 500 mの波長に対応していますが、H75× W145× D206(mm)

これは1925年製の英国ジェコフォン“ジュニア”と呼ばれるものです。方鉛鉱を用いた検波器で精度高く造られています。通常300~ 500 mの波長に対応していますが、H75× W145× D206(mm)

内部はヴァリコンと木の棒を芯としたコイルによって構成されています。

内部はヴァリコンと木の棒を芯としたコイルによって構成されています。

検波器の下のU字型のショートプラグをはずし別売のコイルを差し込むと1600 mく らいまでの波長にも対応できるようになっています。

検波器の下のU字型のショートプラグをはずし別売のコイルを差し込むと1600 m らいまでの波長にも対応できるようになっています。

*この記事は、小林健二著「ぼくらの鉱石ラジオ(筑摩書房)」より抜粋編集しております。

HOME

鉱石ラジオの実際(1)

鉱石ラジオの実際(2)

KENJI KOBAYASHI