タグ別アーカイブ: 小林健二執筆

導体材料(絹巻線)と絶縁材料(雲母)について

導体材料としてアルミ、真鍮、鋼の板材や棒材に加え、錫やアルミの箔はよく使われます。

そして何よりよく使うのは、導線としてのエナメル線でしょう。太さは0.2~ 1.6mmくらいまでは入手しやすく、そのうちコイル巻きに使うのは0.3~0.6mmが適当でしょう。

*エナメル(enamel)とは、ニスに顔料などを混合した塗料のことで、銅線にその塗料が薄く被覆してあります。コイルを巻く時には線と線が接するので、そこでの導通を避けるためです。被覆する塗料が透明なものもあり、コイルに使用する時は、銅の色のものでもエナメル線と表示してあるものを購入してください。

またエナメル線でもU.E.W(ウレタンエナメルワイヤー)と呼ばれる、サンドペーパーで被覆を取り去らなくても少々長くハンダゴテを当てていると熱によって被覆が浮いてそのままハンダ付けができるものもあります。色は緑の濃淡、赤、透明(銅そのままの色)などがあります。

導線で、左側が絹巻線、右側がエナメル線です。

もしどこかでD.S.C.(ダブルシルクカヴァード)と呼ばれる1重絹巻き線が人手できると、昔のコイルみたいに作れるばかりか、すべらずにしっかりと巻くことができます。

*絹巻線のいろいろ。絹糸が青や赤、黄色、緑に染められているものと、染めていない状態のものです。

*絹巻線は銅線に被覆の役目をしている絹が巻かれています。

*絹巻線などを使用して作ったコイルのいろいろ。昔のコイルを参考に自作のものに加え、海外から購入したものも含まれます。左上の黄色の絹巻線を使用しているコイルは小林健二設計製作による「クラウンコイル(小林健二命名)」です。

*昔のコイル。真ん中のものは大小のコイルの位置を可変して、同調する役目をするもの。

コイルについて

 

*エナメル線や絹巻線などをコイル枠(画像ではスパイダーコイルの巻枠)に巻くときに、線が絡まないように進めることが大切です。

*こんな装置を木などで自作しておくと、コイル巻きの時に便利です。外形寸法に合わせて横棒の位置を可変できるように棒をさす穴が上下に空いています。

*絶縁材料にもいろいろありますが、気に入って使用しているのが雲母です。

マイカ(雲母mica)一一空気をはじめとして絶縁物はたくさんありますし、技術的に簡単と言うなら紙やセロファンもいいと思いますが、なかでもマイカは工作上美しいし、性能上も他を圧しているようにぼくは思います。

雲母は天然鉱物で鉱物学上これに属するものには本雲母群、脆雲母群等があって、実用に供されるのは本雲母群のものです。このなかには大きくわけて7種類があります。

 

白雲母muscOvite、曹達雲母paragonite、鱗雲母lepid01ite、鉄雲母lepidOmelane、チンワルド雲母zinnawaldite、黒雲母biotite、金雲母phlogOpiteで、日本画などで雲母末のことをきらと言うように、まさにキラキラしていてぼくの好きな鉱石の一つです。

雲母はインド、北アメリカ、カナダ、ブラジル、南米、アフリカ、ロシア、メキシコ等が有名ですが世界各地で産出します。日本ではあまりとれないのでもっぱら輸入にたよっています。白雲母は別名カリ雲母といって無色透明のものですが、黄や緑や赤の色を帯びることがあります。そのうちの赤色のマイカはルビー雲母rubymicaとも呼ばれ、 とても美しいものです。比重は276~4.0くらい、硬度は28~ 3.2です。金雲母は、マグネシア雲母、琥珀雲母amber micaとも呼ばれ、比重は275~ 2.90、硬度は25~27、少々ブラウン色に透きとおり、やはりとでもきれいです。

絶縁材料として使われる雲母

*ルビー色で美しい雲母

雲母を工作に使用する際には、むやみやたらとはがさないで、最初に半分にしてそれぞれをまた半分にするというように順にはがしてゆくと厚さをそろえやすく、好みの大きさに切る時は写真などを切断する小さな押し切りでよく切れます。厚いうちに切断しようとすると失敗することが多いので、使用する厚さになった後でカットするようにした方がよいでしょう。なお工作の際、マイカの表面に汗や油をつけないように気をつけましょう。

*雲母などを切断するときは、このような押し切り裁断機を使用すると綺麗に切れます。

このほか絶縁材料としては、ベークライト、エボナイト等、ガラスエポキシ、ポリカーボネイトなどがあります。

*小林健二著「ぼくらの鉱石ラジオ(筑摩書房)」より抜粋編集し、*印の文章や画像は新たに追記しています

KENJI KOBAYASHI

保存保存

保存保存

保存保存

保存保存

保存保存

保存保存

保存保存

保存保存

保存保存

保存保存

保存保存

[星のいる室内]より

[T君の望遠鏡]

中学生になって、ぼくが同級生に誘われて渋谷の五島プラネタリウムに行き始めた頃、二つ年上のT君は、6cmの屈折望遠鏡を持っていた。彼は野球少年で、しかも星座少年だった。

T君の自慢の望遠鏡は、いつもピカピカでカッコよかった。

ある日「ちょっと覗かしてよ」と言って、みんなが順番に見せてもらった時、プラネタリウムが嘘っぽく見えるのは、星がありすぎるからだと思っていたけど、その小さな覗き窓に創造を何倍も超える星々の存在に声を失ってしまった。

「すごい」とか「星がたくさんある」とか言うと、一緒に涙も出そうだったからだ。

その後ぼくは、ぼくの中学のサッカー部創設メンバーに加わり、朝から夜までサッカーに明け暮れた。ペレやジョージベストやベッケンバウワーが、ぼくにプラネタリウムやT君の望遠鏡のことを、忘れさせていた。

そして、T君の卒業したその次の年の夏。しばらくぶりに仲間とT君の家に行くと、そこは空き家になっていて、家の中は空っぽだった。彼には昔からお父さんがいなくて、新聞配達をしていたが、赤坂の方で働いていたお母さんに大変なことが起こって、そして急に引っ越したのだと隣のおばさんから聞かされた。

ぼくらは何も喋らないまま、夕暮れの彼の家の中にいて、あの立派だった望遠鏡のことをしばらくの間、想っていた。

 

[流星群と変光星]

夜、久しぶりに外へ出て

空を見上げていると

東の方角にペルセウスの流星群

 

何かが始まる未知の気配を

全ては開かぬしばし間に

再び心も風景の静寂に一致してゆくまで

いつのまにかに飛び出していた

夢の翼は輝星の表を追い走けてゆく

 

おおくま座 ウルサマヨール

位置11007626α(アルファ)ドウベを超え

やがて(イプシロン)アリオス位置12518562を捕える

北極星が変光をして

ウルサミノールが輝くときに

基準都市の上を

重星の命が通り過ぎてゆくのだ

ぼくは星表番号とその星の名を探し出し

君のなまえを書き添える

 

古代の時間が訪れて

ジュラ紀の空を思い出す。

 

小林健二

*作品集「星のいる室内(1993年発行:ガレリ・ヴォワイアン)」より抜粋し、画像は新たに付加しています。ヴォワイアンで開催された小林健二個展に合わせて出版された本で、内容はギャラリーオーナーの文章と展示作品、小林健二の文章などで構成されています。

小林健二作品集「星のいる室内-STELLA IN THE ROOM」発行:ガレリ・ヴォワイアン

小林健二作品集「星のいる室内-STELLA IN THE ROOM」(クロスを使用したケースと上製本により仕上げられた美しい本です)

小林健二作品集「星のいる室内-STELLA IN THE ROOM」(クロス製本のケースと本、顔料箔押しのされた表面に小林健二作品のシールが貼られている。装丁:小林健二)

小林健二は天文的なテーマの作品を多く制作していて、その中から何点か紹介してみます。

中でも「土星」をモチーフにしているものが多くありますが、他の記事でも紹介しているため省いています。画像は小林健二作品「土星装置」の一部です。

小林健二作品「月の人ーMOON WILL」

「星座遠方-STELLA DISTANCE」の作品タイトルで小林健二は何点か連作を描いています。

小林健二作品「星座遠方」

小林健二作品「星座遠方」

小林健二作品「星座遠方」

小林健二作品「星座遠方」

小林健二作品「星座遠方」

KENJI KOBAYASHI

 

保存保存

保存保存

保存保存

少年少女だった頃

「水晶と6cmの土星」

ぼくは仕事上、絵や立体作品などを製作しているのですが、筺の中に青く光る土星が回っていたり、色々な鉱物の結晶のような作品も作っています。

そしてこれらはぼくが子供の頃に受けた出来事と大きく関係しているところがあるのです。

 

やがてしばらくしてぼくは失語症のような状態になり、いつもオドオドとして、さらに家から外へも出れなくなってしまいました。ただぼくには二つ年下のとても親しい友人がいたことが唯一の救いで、彼とだけはいつも一緒におりました。よく二人で上野の科学博物館に恐竜や化石を見に行くのが好きで、そんな時は都電に乗って自分からも外に出たいと思っていたのです。

そんなある日、ぼくと彼とに当時は鉱物の標本のとても充実していたその博物館の広い一室で、優しく声をかけてくれた人がいました。大人の人全般に恐れを抱いていたぼくも、丁寧な鉱物への説明や美しい結晶を直に手に取らせてもらいながら、何回となくその人の処へ通ううちに、だんだんと鉱物の世界に引き込まれて行きながら、少しづつ心を開いていったように思います。

数年の後には、対人赤面症ではありましたが、随分と人と会話できるようになっていました。

もしあの頃、あの学芸員のような方が声をかけてくれなかったらと、今でも感謝を込めて思い出すことがあります。

やがて中学になり、いつも一緒にいた友人の彼は、彼のお父さんが広島で被爆していたため二次被爆から白血病隣、12歳という若さでこの世を去りました。

それはまた再び暗闇の中へとぼくを突き落としたのです。ただその頃はサッカーにも夢中になっていた時期でもあり、表向きはせいぜい無口でおとなしく目立たない中学生に見えていたと思います。

しかしながら心の中では今となってはうまく説明できないほどのイライラやジレンマを持っていました。歌を作って一人で歌ったり、絵を描いたりすることと、体を動かすサッカーでどうにか生きていたという感じを思い出します。

そんな時、ある年長の先輩がぼくに望遠鏡を覗かせてくれました。それは6cmの赤道儀付き屈折式の決して高価なものではありませんが、彼は器用に捉えてもすぐに逃げ去ってしまう一つの星を見せてくれたのです。それは土星でした。「本当に輪があるんだ」と言おうとしたのですが、どうしたわけかとめどもなく涙が出て、最後は言葉になりませんでした。

その時、本でしか見たことのない天体の世界と本当にこのあえかな望遠鏡でつながっていると思い、さらにすでに他界した友人もそこにいるような気がしたからかもしれません。そして何か勇気のようなものが見えない世界から励ましてくれているように感じたのです。

あれから30年が経ちましたが、あれらの鉱物がその友人と水晶のように結晶し、またあの青い輪のある星で待っているような幻が、今のぼくの宝物であるのです。

小林健二

[サイスコープ-PSYSCOPE]
小林健二作品

[MIDNIGHT RADIO]
電波を受信するとレンズの奥に潜む結晶が光りながら音声に合わせ明滅する。
小林健二作品

[Noctural Saturiun-土星夜]
作品左下の自作結晶が様々な色彩に光り、宇宙からの電磁波を受信するとノイズに似た音声が発せられ、自作レンズの奥に巨大な土星が青く輝きながら浮いて回転する。小林健二作品

[SATURN GEAR-土星装置]
窓から見える土星がゆっくりと青く光りながら回転する。
小林健二作品

[SATURN TELESCOPE TYPE88-八八式土星望遠鏡]
1988年に構想し、16年後に完成した作品。長く伸びたラッパ状の先にあるレンズに全体像を表す土星が見え、青く光りながら回転する。
小林健二作品

[SATURN TELESCOPE TYPE91-九一式土星望遠鏡]
1991年に構想し、19年後に完成した作品。レンズには全体像を表す土星が見え、青く光りながら回転する。
小林健二作品

*2000年のメディア掲載記事より抜粋編集し、画像は新たに付加しています。

KENJI KOBAYASHI

 

保存保存

保存保存

[PROXIMA 奇蹟の場所]

小林健二個展[PROXIMA-INVISIBLE NUPTIALS]案内状です。

「PROXIMA- INVISIBLE NUPTIALS(プロキシマー見えない婚礼)]小林健二個展のサプリメントとして製作された本です。

1、

ぼくは子供の頃から、鉱物や恐竜などが展示してある自然科学の博物館に行くのが好きでした。そしてまたぼくが思い出せないところまで自分の記憶を巡ってみても、そうしたものを物心がつく頃より好きだったと思うのです。その他にもぼくのお気に入りは、クラゲやゼリーのように、あるいは硝子や石英のように透明なもの、また鳥や飛行機のように空を飛ぶものや電気などによって発光する淡い光、蛍や夜光するものたち、星や宇宙の話、そして闇に潜む目に見えない霊と言われるものたちのこと。また、時にひどく醜いからかもしれない悲しみを背負った怪物と言われるものたち全て、等々です。

そしてそれらは今でも少しも変わることがありません。

ぼくは今だに生きていることってどんなことなのか?

宇宙や死、霊や結晶というものについていろいろ知って見たいと思い、たくさん本を読んだりしてみても、何ら自らの問いにすら答えることができないでいます。

ぼくはきっと不思議と感じる事が好きなのです。そしてそれについて考えたり、また知ろうとしたりすることが、ぼくがいる意味のように感じられてなりません。

(中略)

小林健二と彼が子どもの頃から通っていた東京渋谷にあった五島プラネタリウムの投影機。現在は廃館になっています。

プロキシマという天体に興味を持ったのは、子供の頃プラネタリウムに行っていたとき「ケンタウルス座のアルファ星辺りに生命がある兆しが発見されそうだ」と行ったようなことを聞いたからだと思います。もちろん聞き違いだったかも知れません。でも今でさえどこかの星の上で、地球とはまた異なる世界があることを考えると、何か言い知れずわくわくしてくるのです。

このプロキシマの世界についてまず思ったのは、結晶の世界のことでした。それはここ数年、結晶を作ることに取り分け興味があることと関係していると思います。結晶を作ると言っても水溶性結晶の育成では、結晶化する条件を整えることが中心であって、結晶となって行くのはそのイオンそれ自身であり、たいてい作業者の意志のままにというわけにはいかないのです。

地球上のいたるところで今では数多くの鉱物結晶が発見発掘されてきました。しかし他の見知らぬ天体では、いったいどのような結晶世界が繰り広げられていることでしょう。生命現象の確認が困難でも、地球型の惑星であるなら必ず鉱物は存在するからです。地球とは異なった組成や地学的運命によって創成される出来事は、どのようなものなのでしょう。

そこでぼくは、地球上であまり天然には見つけにくいだろうと思われる結晶を、作ってみることにしたのです。

結晶が成長して行く様を眺めていると、そこはかとなく不思議な世界へと誘われてゆくのです。一日のうちに0.5ミリでもその成長が見えるほどなら、実はその物質のイオンは1秒あたり数百の層を結成していることになるというのです。観察者にとっては何千何万年の時間の流れを見ているかのようです。いかなる天然の摂理が導くのか、それぞれの成分はその姿を顕わなものとしてゆきます。どのような力が、あるいはまたどのような想いが促すのか、人間には計り知れないと思える世界を、ただただ、まのあたりにするだけです。そんな時にぼくの中に浮かんできた言葉が「見えない婚礼」というものでした。一つ一つ光量子やイオンの世界から極大な宇宙に至るまで、何か人間の目には見えにくい方法があって、それらが知らず知らず了解し合うような、まるで聖なる婚礼のような・・・。

小林健二自作結晶「プロキシマ系鉱物」

小林健二自作結晶「プロキシマ系鉱物」

小林健二自作結晶「プロキシマ系鉱物」

小林健二自作結晶「プロキシマ系鉱物」

2、

ぼくの住む街には植物園があります。ときおりぼくはその場所へ出かけます。ここはまた数百年の間、人に触れられていない小さな場所が庵のように点在しているのです。天然の世界から見れば瞬く間の事であっても、大きく様を変えてしまった人間世界の都から、それほど高くはない堀の内に大切な世界は守られ続けているのです。必ずしも大きくはなくとも多少開けて見える所から道をそれ、奥まった感じのところでは何処か深い山の中にいるような、そんな錯覚を得るほどの広さはあるのです。ぼくは普段とは異なる丁寧な歩き方をしながら、お気に入りの小さな場所を探して、静かに散策をはじめます。そしてやがてそこは発見できるのです。葉の陰や苔のある石のかたわらなどに、斜めから射した光がはっきりとした陰影をつけ、何処からか水の流れる音とともに、泡が爆ぜるようなかすかな笑い声のようなものが聞こえてくる・・・。涼しい風と暖かな光がやどり、緑色と清らかな水とによって囲まれた、そこは清潔な秘密の楽園です。

ぼくはいつのまにか名も知らない、小さな翅のある生体に姿を変えて仲間たちとそこで暮らしています。霞のようなやわらかな水蒸気を通して差し込んでくる日差しは明るく、碧(みどり)色の翡翠(ひすい)のように澄んだ暖かな水につかっているものたちは、みんな楽し気に何かを語らいあっているようです。彼らの美しい身体を被うものは何一つとしてなく、自由な開放感がここには溢れています。近くには沢があり、きらきらとした輝ける音響が彼方までを支配して、遠方を行き交う鳥のような生き物の声は、深い残響の中で複雑でいながら爽やいだ一つの調べを持っています。しっかりとした垣根のように青色に透ける植物たちの生茂るまにまに、世界は無限に広がり、その涯は淡い紫色の夜明けの風景へと霧がやわらかく溶かしているのです。

魚のようなしなやかな身体と花のような笑い、音楽のような哲学と木漏れ日のような英知。うっとりするような、まさに見えない婚礼なのです。

小林健二は時々近くの植物園に出かけて、自作レンズで撮影をしている。

小林健二写真作品(自作レンズでにより撮影)

小林健二写真作品(自作レンズでにより撮影)

3、

これら奇蹟の場所はこの宇宙中いたるところに入口があって、その通路は星から星へと、場所から場所へとつながっている特性を持っています。そしてどのような生命現象でさえ、この秘密への通路に入ることができるのです。ただそこへ行ってみたいと探しているだけでいいようです。

たとえば今はまだ早朝なのですが、ぼくのいる部屋のベランダにスズメが来て鳴いています。これは毎朝の風情ですが、先程その傍らに一羽のメジロがやって来て、まるでスズメと手すりの上でさえずり合っているようでしたが、しばらくすると彼らは一緒に朝の世界に飛び去って行きました。その際、二人は何かうなずき合ったようにぼくには見えたのです。まさに彼らもまたそんなプロキシマの世界へと行き去って行ったのでしょう。

跋、

液体空気のような魔法が彼方まで澄み渡っている

未だに遠く「婚礼」という名の未知の星から

ときおり幻は交通してくる

人魚のようなくらし

揮発性のまなざし

どうしたのだろう あれから一年が経つというのに

現(うつつ)は夢へと そして夢は現へと

銀色の過去の歴史を永遠の湖に深く沈め

ぼくらは雑踏の中でも目を瞑れば

その場所を思い出せる

幾千の事実と幾億の夜とが結合し 姿を現す遥かな神秘の風景

それらへと続く明滅する星雲を従えた蒼い寝台

ゆっくりとその方向を指差している水先案内の鶫(つぐみ)に似ている生命体は

もう二度とここへは戻れないことを知っている

結晶化し 変化して 成長する緩やかに回転している巨大な船体

それらは何物からも強いられることもなしに

固有のありさまを形成してゆく

塩基の日記へ 酸性の言語によって記された想いの原影

そこでぼくらは違う姿で、もう一度巡り逢う

小林健二

*「PROXIMA-INVISIBLE NUPTIALS(プロキシマー見えない婚礼)」より編集抜粋し、画像はあたらに付加しています。結晶作品はこれまでに紹介していない画像を選んでおります。なお、今回の記事はこの本の後書きにあたり、前書きにあたる文章を以前紹介しているのでリンクでご覧ください。

プロキシマ系鉱物ー[PROXIMA-INVISIBLE NUPTIALS]より

KENJI KOBAYASHI

 

保存保存

ネームプレートを作る

「オーロラ通信社製鉱石ラジオ(小林健二作)」プレート部分

鉱石ラジオのような工作をするときに、小さくてもネームプレートなどがついたりすると、急に本格的になったような感じがします。ネームプレートは金属の板や樹脂板に文字を彫ったりする方法もありますが、ここでは金属の板を腐食して作る方法を紹介してみたいと思います。

材料は銅、あるいは真鍮、アルミ、亜鉛などの0.5~ 2 mm厚くらいの板を硝酸、第二塩化鉄で腐食して作ることが多いのですが、ここでは1mm厚の銅板を第二塩化鉄で腐食する方法を示します。

表面をよく磨いた(商品名ピカールなどのメタルポリッシュで)1mm厚の銅板を用意します。銅板は七宝材料などを扱うお店や銅版両などの材料を扱う画材店で入手できます。

上がアクリル板などを切るのに使用するPカッター(替え刃式)・下が銅板などを切るための道具。ともに定規を当ててV字に切り込んでカットしていきます。

すでに必要な大きさに金ばさみや金鋸、あるいは鋼板切りといって銅版画材料店にあるプラスチックカッター(Pカッター)のような工具でカットしておきます。

端は少しなだらかになるようにヤスリで面を少しとっておきます。そして裏側には腐食止めをするために粘着テープかカッティングシートなどを貼っておきます。そして文字として出っ張らせたいところにはインスタントレタリングを貼り、マークや絵は油性のマジックインキを使ってなるべくしっかりと防食できるように重ね書きをしてよく乾かしておきます。自分が満足できるデザインに仕上がったらなるべく指紋や油を腐蝕する部分に付着しないようにして作業を進めます。

腐食しないように金属板の裏にはカッテイングシートを貼っておきます。

腐蝕しようと思う銅板が十分に入る大きさで2~ 3 cmくらい深さのあるプラスチックやガラス製のお皿かバットを用意して、中に第二塩化鉄の腐蝕液を入れておきます。この液はやはり画材店の銅版画のコーナーや電子工作のパーツなどを扱う店のプリント基板の製作材料コーナーで人手できます。用意ができたらその液の中にさきほどの銅板を静かに入れ、ときどき様子を見ながら自分の思う深さまで腐蝕が進んだかどうかを5~ 10分おきにみながら作業してください。もし途中でインスタントレタリングやマジックの線がはがれてくるようなら、液からあげて水洗いをし、乾かして修正をして、作業を続けてください。

このようにして何度か練習をすれば、すぐにうまく作れるようになります。

腐蝕液は何度も使えますが、そのうち腐蝕力が落ちてきて使いづらくなってきたら、そのまま下水などに流したりせずに、炭酸カルシウムで中和してから処理してください。この処理の詳しい方法は、入手するときに店の人が教えてくれるはずです。

このようにしてプレートができたら、文字をもっときわだたせるために低い部分に塗料を塗ります。黒のつや消しのスプレーなどを全体にかけて、80~ 100番くらいの粗い耐水サンドペーパーで水をつけながら磨くと、文字などの高く残ったところが浮き出てきますから、そのあとをメタルポリッシュなどで磨き、ビスや釘でプレートを取りつけるための穴をあけたりして出来上がりです。色も自分の好きなものを選んでください。

この作り方を知っておくといろいろなことに利用できると思います。また、文字や数字を刻印する方法(工具は彫金材料店で人手できます)や、写真焼き付けで字や絵の防触層を作る方法(この材料はさきほどのプリント基板の材料コーナーで入手できます)もありますので、いろいろ試してみてください。

*この記事は、小林健二著「ぼくらの鉱石ラジオ(筑摩書房)」より抜粋編集し、画像は新たに付加しています。

*小林健二の作品にも自作プレートが使われていて、その中の何点か紹介してみます。

「1965年3月27日午前」
木、鉛、電気、風景
1991
(通電すればその時だけ約一時間ほど1965年3月2日の風景が箱の中に現出するとのこと。不思議と人によっては心の中にそれが浮かんでくることもある) *プレートは鉛板にタイトルが刻印されています。

「サイラジオ-透質結晶受信機-」
木、合成樹脂、電子部品、他
1993
(透明結晶が青く光りながら回転し、同時にラジオも受信する)*金属製のプレート

KENJI KOBAYASHI

コイルの巻き方

以前いろいろなコイルについて説明をしましたが、コイルを製作する上で参考にしてもらうために、ここではいくつかの巻枠と巻き方の実際を紹介してみたいと思います。

図はハニカムコイルのホルダーの巻枠部の展開図です。 上は単ハニカムコイル
の巻順で、図のように巻いていきます。
コイルが十分巻き上がったらホルダーからピンを抜きニス等で固めて作ります。
中は複ハニカム巻きでホルダーは同じですが、巻き方がちょうど1つおきに巻い
ていきます。 一巡巻き終わった後、 下のようにさきほどとばしていったところを
巻いていきます。

図はウェーブコィル等を巻くときのホルダーです。棒の部分は真鍮製でネジが切ってあり中心部のコアに付いていて、コイルを巻き終わった後、棒を回し取ってしまい、 コイルがバラバラにほどけてしまわないようにワイヤーが交差したところを糸等でしばってしっかりさせます。

スパィダーコイルはこのように巻枠に羽2つごとに互い違いに巻いていきます。

ハニカムコイルを手巻きで巻くホルダー

バスケットコイル等を巻くための自作のホルダー

図はバスケットコイルの巻枠で、上のものは米国で売られていたものです。コ
イルの径を変えられるようになっています。下はポピュラーなもので堅い木に穴
をあけ真鍮製の棒を抜き差しして使用します。 2列に穴があいているのはコイル
の径を変えるためです。

画像は左上・芯のついたラジアルバスケットコイル、中上・ウェーヴコイル、右上・クラウンコイル(小林健二設計)、左下・スポークコイル、中下・スパイダーコイル(大正時代のもの)、右下・ナローバスケットコイル。

*この記事は、小林健二著「ぼくらの鉱石ラジオ(筑摩書房)」より抜粋編集しております。

コイルについて

KENJI KOBAYASHI

検波に使える鉱石いろいろ

いろいろな黄鉄鉱

黄鉄鉱

鉱石ラジオによく使われた石で、感度の良い石です。硫黄と鉄の化合物で、びっくりするほど綺麗な立方体をしているものもありますが、他にも五角形の12面体のものや正8面体のとても細かな結晶など、形は様々です。また化石が黄鉄鉱化することもあります。「愚か者の金」と呼ばれるほど、見た目が金に似ていますが、金ではありません。方鉛鉱よりも固く、割れにくいので初めての人にはオススメの石です。

接合型鉱石検波器
鉱石検波器の多くは鉱石に細り針を立てる、点接点型の検波器でした。接合型と呼ばれる、鉱石どうしを面で接触させたものは、向かい合う面がコンデンサーとして働き、高周波電流が流れ込んで整流作用がうまく得られないためです。しかし、紅亜鉛鉱と他の鉱石を組み合わせると、方鉛鉱や黄鉄鉱よりはるかに良い感度が得られることがあるのです。
人工の紅亜鉛鉱(上)と人工ビスマス(下)の接点型鉱石検波器(小林健二作)

いろいろな方鉛鉱

方鉛鉱

検波器の代表といっていいくらいよく使われ、黄鉄鉱に負けないくらい感度の良い石です。硫黄と鉛の化合物で、見るからに「鉛」という色をしています。ハンマーで軽く叩いて割ることができるくらいもろく、劈開性があるため、小さく割ってもサイコロのようになります。そのため、ネジなどで押し付けると割れてしまうことがあるので、固定するときはハンダで台座を作ります。

斑銅鉱と黄銅鉱

斑銅鉱と黄銅鉱

これらも比較的感度が安定している石です。左側にある三点が斑銅鉱で、金色のところは黄鉄鉱です。斑銅鉱は硫黄と鉄と銅の化合物で、表面が酸化してメタリックな緑・青・紫・赤・黄の斑銅鉱担っています。感度は、割ってから酸化して落ち着いた頃の方がよくなる場合があります。

右側三点が黄銅鉱です。硫黄と鉄と銅の化合物ですが、斑銅鉱のようなメタリックカラーではなく、見た目は金のような感じです。ところどころ青や紫に色づいていることもあります。

紅亜鉛鉱(上段左以外は人工結晶と思われる)

紅亜鉛鉱

紅亜鉛鉱は本来、亜鉛の酸化物ですが、マンガンが不純物として混じっているものは赤っぽい色をしています。方鉛鉱や黄鉄鉱よりも感度が良い石です。日本では産出され図、アメリカ・ニュージャージー州のスターリングヒルとフランクリンという鉱山で飲み取れます。左の石は赤いところが紅亜鉛鉱です。不透明のように見えますが、拡大してみると透明感があります。透明な黄やオレンジに見える透き通った結晶などは人工の紅亜鉛鉱です。

この透明な結晶は酸化亜鉛です。12Vの電源に繋いでみると高輝度発光ダイオードが点灯しました。金属光沢もなく、透き通っているのに、電気を通すというのは不思議な感じがします。結晶の長さは20cmぐらいあります。

そのほかにも感度は保証できませんが検波できる鉱物です。

1、硫砒銅鉱
2、輝水鉛鉱
3、白鉄鉱
4、自然銀
5、銅藍
6、隕鉄

7、錫石
8、自然銅
9、石墨
10、赤銅鉱

 

*「趣味悠々-大人が遊ぶサイエンス(日本放送出版協会)」の小林健二の記事部分より一部抜粋。何回かに分けて紹介予定。画像は書籍を複写しており、鉱石は小林健二所有の標本です。

1,スパイダーコイルに挑戦しよう

KENJI KOBAYASHI

スパイダーコイルに挑戦しよう

「趣味悠々-大人が遊ぶサイエンス(日本放送出版協会)」の書籍より

巻き枠を作ります。羽の数を15枚として、2枚貼り合わせた厚紙に円盤を、比例コンパスで15等分し、印をつけます。印をつけたら、それぞれ中心点と線で結んでおきます。

比例コンパスを使わないで15等分する方法です。平行に等間隔で引いた16本の直線上に、厚紙円盤の円周と等しい長さの細い紙を乗せます。紙を斜めにすれば、直線のところで15等分されます。これを円盤に巻きつけ印をつければいいのです。

V字に切った厚紙を型紙にして、15等分の線を中心にしてV字の線を引きます。

円盤の内側の円と15等分の線の交点にポンチで穴を開け、穴の両端から、V字の線に沿ってカッターで切り取ります。

全体にニスを塗ります(この場合、見やすいように黒いニスにしています。)

羽を2枚ごとに飛ばしながら、エナメル線を巻いていきます。

タップを出したいときは、途中でエナメル線をより合わせます。(わかりやすくするため写真ではエナメル線の色を変えています)

アイスキャンディーの棒を使ってもスパイダーコイルや、バスケットコイルの芯などを作ることもできます。

コイルのいろいろ

コイルの巻き方にはいろいろあって、目的に応じて使われています。ソレノイドコイルは作るのは簡単ですが、隣り合う線同士がコンデンサーになり、その電気容量のせいで計算値とずれたり、高周波の電流が流れてしまったり、いろいろと問題が起きます。コイルはコンデンサー部分がすくなくて、インダクタンスの高い物がラジオにとって性能のいいコイルと言えます。1~8は小林健二作のコイルです。

1,ソレノイドコイル
2,ビノキュラーコイル
3,スペース巻きコイル
4,相互インダクタンスを変えられるコイル
5,クラウンコイル(小林健二設計)とバスケットコイル
6,デイーコイル(Dコイル)
7,ウエーブコイルとスパイダーコイル
8,スパイダーコイルとオクタゴンコイル
9,ベークライト板(コイル枠)*1~8は小林健二作のコイルです。

ルーズカップラー
タップが出ていて巻き数を変えることで、自己インダクタンスを変えるだけでなく、中のコイルを出し入れして相互インダクタンスを変えることができます。

コンデンサーのいろいろ

電気容量の変えられるコンデンサーのことを「ヴァリアブルコンデンサー」通称「ヴァリコン」と言いますが、絶縁物を挟んで向かい合っている2枚の極板の、間隔が面積を変えることができればいいので、簡単なものは自作することも可能です。写真3を除き、ぼくが作ったものです。

1,エアーヴァリコン。空気を絶縁物としたものです。ダイアルを回すと羽の向かい合う面積が変わるようになっています。
2,本のように開くことのできる板の内側に真鍮板を貼ったもの。開き具合で電気容量を調整します。3,エアーヴァリコン。真鍮製で重いのでバランスウエイトが手前についています。
4,表面に錫箔を貼った太さの違う試験管を重ね、内側の試験管をスライドさせることで電気容量を変えます。
5,ガラスに錫箔を貼ったもの。
*1,2,4,5は小林健二作

*「趣味悠々-大人が遊ぶサイエンス(日本放送出版協会)」の小林健二の記事部分より一部抜粋。何回かに分けて紹介予定。画像は書籍を複写しております。

検波に使える鉱石いろいろ

鉱石ラジオの歴史と魅力

KENJI KOBAYASHI

空中線回路について

この図は以前にも掲載していますが、鉱石ラジオの構造を4つに分けてあります。今回は「空中線」の部分です。

空中線

基本的にこの回路は電波をとらえるアンテナ(A)と余分な電流を流すアースによって成り立っていて、途中に次の回路に電流を進めるコイル(L)が入ったり、同調回路のコイルと共有になったりすることもあります。本来なら、鉱石ラジオではアンテナのことを空中線とするのがふさわしいのかもしれません。

なぜかというと、鉱石ラジオができたころ、イギリスにいたマルコーニが大西洋横断の無線通信に初めて成功した実験で、 150mの高さにあげた凧から垂らした針金で電波をキャッチしました。それでイギリスでは今でもエアリアルearialと言っていて、空中線はその訳語だからです。

アメリカでは比較的早くから真空管式ラジオが発達し、感度がよいのであまり大きくない空中線でも聞こえるため室内アンテナが開発され、可般性のものが大半であったため、そこからアンテナantenna(昆虫などの触角)と言うようになったようです。

室内アンテナのいろいろ

電波と空中線

電気力線の向き

電波をキャッチするのも空中線ですが、電波を送信機から放出するのも空中線です。ではいったいどのようにして電波は空中線から放出されるのでしょう。

同調回路のところでお話ししたように、コンデンサーの両端に直流の電圧をかけると(+)から(ー )のほうへ電気力線が発生します。

もう一度くり返しますと、電気力線は図に書いたような線として実際に存在しているわけではなく一種のたとえのようなものですが、低い電圧ではその数は少なく、電圧が高くなると数も増え電圧の向きを変えると電気力線も向きを変えると考えます。

ですからもしこのコンデンサーに交流の電圧をかけると、電気力線も増えたり減ったり、逆向きになったりするわけです。

またこのコンデンサーの極板の距離を少しずつ離してゆくと、電気力線はそのお互いの反発力によって、(+)から(― )へはゴムの線のように引き合いながらも横のほうへと広がって、徐々に膨らんでゆくのです。

このように直流の電圧の場合は、横にいくら膨らんでいても電気力線はそのままを保っていますが、ここに交流の電圧をかけるとちょっとおもしろい現象が起こると考えられています。低い周波数のときにはそれでも電気力線は少々膨らみながらもせわしくその方向を変え、増えたり減ったりしているのですが、周波数が高くなるにつれ、大きく膨らんだ電気力線は、中のほうへ戻ることができなくなりはじめあとからあとから、まるで押し出されてゆくように順々に外のほうへと飛び出すようになってゆくのです。それがいったいどのように行われているか、本来、人間の時間系ではおよそ想像することは不可能に思えます。そこで1秒に30万km(正確には299.792.458m)を移動する電波を1秒に1cmくらいの速度にみたてて、もし目で見ることができれば信じられないほどあるはずの電気力線のうち1本だけに注目して説明したいと思います。もちろんこれはあくまでも仮定であって、電磁波の現象を理解するうえでの便宜上の説明であり、未米においてはまったく別の方法でもっとうまく説明できるかもしれません。

①電圧がコンデンサーに全然かかっていないと、電荷は中和しているようなもので、電気力線も発生していません。
②電圧がかかりはじめ、電気力線が発生し、外側が膨らみはじめます。
③さらに電圧がかかるピークを超え、電気力線は少しずつ縮まろうとします。
④電圧の極性が変わり、新たな向きの電気力線が発生します。
⑤内側からの電気力線の圧力で、外側の電気力線も縮よりきれなくなります。
⑥電圧がゼロになって電気力線は切り離されます。
⑦2つの電気力線はつながり、輪のようになります。
⑧内側からさらに発生した圧力によって外側に押し出されます。
⑨完全に電荷から切り離された状態。
⑩連続して電気力線が出ている状態。
⑪実際にはその一つ一つの膨らみに、たくさんの電気力線が東になっていると考えられます。
⑫ちょうど真ん中のあたりに注目して卜下をカットすると、一種の疎密波になっています。
⑬このエネルギーの変化を電圧に置き換えると電波の波が見えてきます。

電波の発射

上の図はコンデンサーの電荷の間で電気力線が発生するようすと、電圧の変化(電圧や方向)を示してあります。おそらくこのようにして、電波は空間に飛び出してゆくと考えられます。低い周波数では電気力線はコンデンサーに戻ってしまい、ある程度高い周波数にならないと電波にはなりにくいということです。そのようなわけで電波の出力をする空中線やアンテナはまさに一種のコンデンサーであると言えるのです。

 

コンデンサーからアンテナヘ

よりよく電波を出す工夫

実際の空中線はコンデンサーの格好をしているわけではなく、もっと電波の出やすいように工夫されています。どのように工夫しているかというと、図の(A)→ (B)→ (C)というように、片方にどんどん開いてゆくとそれだけ電波は出やすくなり、(D)180° に開ききると導体の反対から同距離になるのでさらに出やすくなります。(E)はその一端を大地に接してしまうと、大地は良導体と考えられるので、まるで片方の一端を地中深くに埋めたような効果をもちます。この機構こそが大地(アース)を用いるという考え方で、空中線回路のもうひとつの重要なポイントとなるのです。アースを使う考え方はマルコーニが考案したもので、彼の発明のなかで最も大事なものとも言われています。そこで昔はこのような空中線機構(片方を接地したもの)を、マルコーニエアリアル(マルコーニアンテナ)と呼んでいました。

音声を電波にのせる

振幅変調

マイクから入った音やあらかじめ録音されていた音声などの低周波信号は、いったん増幅され、発振器から出て増幅された高周波の電流と変調器によって合成されます。単純にまぜるだけだと(C)のようになってしまい、(D)のような変調波型にはなってくれません(ここでは変調器の変調理論の説明は省きます)。

この複雑な変調器によって、人の声などの低い周波数の音声信号は、高周波の搬送波carrier waveとともにさらに増幅されて、音声の成分を含んだ電波として空間に飛び立ってゆくのです。

変調とは
FM( frequency modulation)周波数変調・音声電流の波形によって搬送波の周波数を変化させる方式。・搬送波周波数76~ 90MHz(メガヘルツ) AM(amplitude modulation)振幅変調・音声電流の波形によって搬送波の振幅を変化させる方式。・搬送波周波数531~ 16112kHz(キロヘルツ) A ,音声信号 ・B, 搬送波(キャリア)・C ,AとBがまざった波形 ・D, AがBによって変調された波形

 

国内の―般放送の開始(中波による)

アメリカのピッツバークのKDKA局が1920年、 イギリスのロンドンBBC局が1923年、日本の東京のJOAK局が1925年等々、世界のあちこちで国内に向けての一般放送が始まります。これらの放送に使われているのは、中波の周波数の電波です。それまでの経験から、お互いが送受信をするわけでもなくまた国内という限られた範囲での一般向けの放送なので、巨大な設備の必要な長波や遠方まで通信するための短波ではなく、中波の周波数帯が選ばれたわけです。

東京放送局では大正14年3月1日日曜日、芝浦の東京高等工芸学校(現都立大学工学部)の図書館の中に設けたスタジオからその第一声を発しました。「アー、アー、アー、よく聞こえますか?」午前9時半、海軍軍楽隊の行進曲の演奏が始まり、人々はまだ珍しい受信機の前にむらがって耳を傾けていて、その声が聞こえたときには「聞こえた、聞こえた!」と感動のあまり泣きだす人もいたほどでした。この試験放送は成功して、3月22日の仮放送に続き、 7月12日には本放送が開始されたのです。

JOAKの本放送が始まった大正14年当時のヘッドフォン付き鉱石ラジオ。

電界強度

感覚的にも感じるように、電波は距離が遠くになるにつれてだんだんと弱くなります。それは、アンテナからの距離の2乗に反比例していて、たとえば距離が2倍なら1/4、5倍なら1/25というように弱くなるのです。この電波の強さのことを電界強度と言います。もっとも、この減衰率も理想的な状態のときのもので、実際には山や森、高い建物などが電波の伝わるのを邪魔してしまうので、さらに弱くなるのです。これは減衰定数とも言われ、この定数が大きいほど減衰ははなはだしくなります。やはり、でこぼこしている山岳地ではとでも大きくて、森や建物の多いところ→少ないところ→平らな土地→海という順で小さくなります。この電界強度は〔V/m〕という単位で表され、有効な高さ1mのアンテナに1Vの電圧が誘起された場合、 1V/mということになりますが、実際このようなことがあれば怖くて外も歩けないでしょう。通常はこの1000分の1の〔mV/m〕あるいは100万分の1の〔μV/m〕を使用します。

電波の伝わり方

ヘルツが実験で火花のスパークによって電波を発見したころ、その周波数は今でいう短波帯に属するものでした。ところがこれでは電波はどんどん上空に飛んでいってしまい、地球のように円い地面のところでは遠方の地域へは届かないと考えられ、外のほうへ逃げずに地表に沿って進む電波(地上波)が初期の電信事業では開発されていました。短波のように空間に広がる空間波の性質を持つものより長い波長のものほど、地面に広がる性質があって、その地表波の代表が長波です。

ところが通信に長波を使うと、その長い波長に合わせた空中線、同調回路がみな巨人になりますし、先ほどの電界強度の減衰率がとでも大きくて、遠方への通信には莫大なエネルギーを必要としてしまうのです。しかも長波の周波数が低いので、搬送波として用いた場合にどうしてもそれに乗せることのできる音声の帯域は短波のように広くとれないのでした。そのような理由から、ラジオ放送が中波を用いて開始されたと考えられます。

波長と周波数

先ほどから何度も出てくる波長と周波数ということについて、ちょっとまとめておこうと思います。まず周波数というのは交流の電流あるいは電磁波などの交番する周期が、 1秒間に何回あるかを示したものです。 1周期は、交番波形の山から次の山まで、もしくは谷から次の谷まで、 というように同じ向きでもう 1度同じ場所まで戻ってくる間の部分を言います。

この波形の1周期分が1秒間に1回くれば、その周期は1 Hz(ヘルツ)であると言います。たとえば、 1秒間にその周期が50回あれば50Hzで、これは東日本の家庭のコンセントなどに来ている100Vの交流の周波数です。そしてぼくたちの声のような音声を低周波、電波などを高周波と言って、だいたい20 kHz(キロヘルツ)くらいを境にして感覚的に分けています。

電波法などでは30 kHz以上を高周波、 100 kHz以上を無線(ラジオ)周波数などと言っています。

鉱石式送信機

ケネリー・ヘヴィサイド層(電離層)の発見

アンテナやアースのいろいろ

 

*この記事は、小林健二著「ぼくらの鉱石ラジオ(筑摩書房)」より抜粋編集しております。

*この内容から想起するアンテナやアースを使用した小林健二作品を紹介します。

健二式鉱石受信機

KENJI KOBAYASHI

 

 

ケネリー・ヘヴィサイド層

ケネリー・ヘヴィサイド層(電離層)の発見

電波(電磁波)は、本来、光の仲間ですが、周波数が高くなればなるほど、さらに光の持っている性質に近づいてゆきます。ですから短波は光のように直進する性質が強く、長波のように地表に沿って進んではくれず、地球の球面の陰になってしまうところまでは届かないと考えられていました。しかし1901年から1902年におけるマルコーニの大西洋横断無線電信の一連の実験で、イギリス・カナダ間という直進するだけでは届くはずのない位置にある場所どうしの通信が行われ、人々を不思議がらせます。この実験結果に興味を持ったイギリスのヘヴィサイドOliverHEVISIDE(1850-1925)とアメリカのケネリーArthur Edwin KENELLY (1861-1939)は、それぞれほぼ同時期に上空の大気中に電波を反射する何かが存在すると推論するようになりました。

やがて1924年、イギリスのアップルトンなどによって、この電波を反射する層は上空85 kmに存在することが確認され、ケネリー・ヘヴィサイド・レイヤー(K・H層)と呼ばれるようになります。

電波が電離層で屈折し地表で反射する様子(これらの層の区別は必らずしも確定的なものではありません)
1,昼の長波 D層は夜には消滅するため、夜間はE居で屈折し地上に戻るが、長波の空間波はとでも弱い 2,中波 E層で屈折する 3,短波 F層で屈折する 4,超短波 F層もつきぬけ、はるか字宙へと飛んで行く
D層 60~90km(夜間は消滅する E層 約100km F層 200 ~ 400km(昼間はFlとF2の2層に分かれ厚くなる) 昼間は厚くなり活動が激しくとでも乱れている。夜は薄くなり静かで安定している。 G層 600~ 1000km とても上層で稀薄 ES層 スポラディックE層 ときどき発生する突発的 (スポラディック)なもので、E層の距離と密度を持つ

このK・H層は電離層(ionized layer)のことで、太陽からの紫外線やX線が、地球上空にある大気の稀薄なところに当たって、気体原子が電子を放出してイオンとなり、そのイオンの電子は自由電子として空間に飛び回り、やがでまたイオンにとらえられ、中和して消えますが、このようなことを次々と繰り返している場所と考えられます。ここに短波・中波などの電波が当たると、その内部で連続的に屈折することでまるで反射をするように地上に戻り、ふたたび地上で反射され、これを繰り返して地球の裏側までも達することが確認されると、短波通信は飛躍的に発展していきました。

この電離層は太陽から来るX線や紫外線の影響によって起こるものですから、昼間と夜間では状態が同じではありません。またその屈折や反射のぐあいは春夏秋冬によっても異なってきます。そして電離層の発生のさかんな昼間はちょうど沸騰したお湯の表面のように乱れていて、屈折や反射が安定しないので、短波の放送が聞こえにくくなることもよく起こります。ですから、夜になると遠方からの放送に耳を傾ける受信者たちも多かったのです。

そんなわけで、せっかく地球の裏側まで届くというすぐれた性質が認められてもかえって今度は近距離の聴取がしづらいというようなことも起きてきます。

また、スキップ距離skip distanceといって、地表波の減衰の大きい短波にとって、 上昇した空間波が電離層から戻ってくる間の地域では、空間波もともに弱かったり、もしくはそれらが互いに干渉し合って電波にうねりのように強弱がついて、非常に聴取しづらいフェージングという現象が起こったりします。この干渉は空間波と地表波の強度が等しいとき、最も激しく起こってしまいます。これを近距離フェージングと言います。また、通路の異なる空間波どうしの干渉によるものを遠距離フェージングと言います。これらの現象の度合や発生する地域は、季節、時間、周波などによって変化し、一定ではないので厄介なものです。このフェージング現象のような受信障害から免れる対策として、遠方の船舶などへの通信を短波によって行なうときは、場所によってお互いの送受信する周波数を申し合せてよく聞こえるように変えたりするわけです。

*この記事は、小林健二著「ぼくらの鉱石ラジオ(筑摩書房)」より抜粋編集しております。

*この内容から想起する不思議な小林健二作品を紹介します。

[SPASESCOPE-スペーススコープ]小林健二

スペーススコープを調整するのは、少々骨が折れる。試体となるべき物質の質や量によって、その内部に出現する宇宙の構造が変わってしまうからだ。しかし、その後で巡り会える薔薇色や菫色の昴を思うと、時間を忘れる。ぼくは、その上部の接眼鏡から覗き込む。暗箱の中で、形を変えながらゆっくり回転する宇宙に視準を合わせると、手元のレバーで選んだ星に注意深く細い針を接地する。電位を等しくした後、同調ノブで、「今日のお相手」を探し始める。やがてかすかに雑音に混じりながら星の歌が遠い過去の放送電波に乗って聞こえ始める。絶え間なく何かを発信しているその源に、ぼくのこころは導かれて行く。机の上のこの小さな箱には、もはや相対的な距離など存在していないのだ。

明け方まで研究に耽った後、すでに電源が切られているはずのスペーススコープをふっと見ると、結晶鏡のメーターがホタルのようにまだ光っていた。

スペーススコープの接眼鏡から覗いた景色。(小林健二作品より)

KENJI KOBAYASHI